Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hosseinioun, Mir Mostafa

  • Google
  • 1
  • 1
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Acicular ferrite nucleation as a diffusion controlled process in high strength low alloyed (HSLA) steel weld metal4citations

Places of action

Chart of shared publication
Moeini, Ghazal
1 / 10 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Moeini, Ghazal
OrganizationsLocationPeople

article

Acicular ferrite nucleation as a diffusion controlled process in high strength low alloyed (HSLA) steel weld metal

  • Moeini, Ghazal
  • Hosseinioun, Mir Mostafa
Abstract

<jats:title>Abstract</jats:title><jats:p>Acicular ferrite is a desirable microstructure in high strength low alloy steel weld metal. This is due to its improved toughness and the enhanced mechanical properties of the weld metal. Although the nucleation of acicular ferrite has been studied by many researchers, the exact mechanisms of its nucleation and growth are still under discussion and remained unclear. In this research work, the mechanism of acicular ferrite formation in the weld metal as cast structure has been clarified as diffusion controlled solid state phase transformation. This is based on the classic theory of nucleation and growth which can contribute to possible increase of nucleation sites and growth of intergranular ferrite in HSLA steel weld metal. Therefore, it could be considered that inclusions are not acting as a nucleation site for the intergranular acicular ferrite. Consequently, our results revealed that, in austenite transformation to pro-eutectoid and acicular ferrite, manganese as an austenite stabilizer alloying element is playing an important role in the nucleation and growth of the ferrite grains. It should be added that cooling rate accompanied with the presence of other alloying elements has influenced the type and morphology of the final ferrite microstructure and constituent products.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • grain
  • inclusion
  • phase
  • theory
  • strength
  • steel
  • Manganese