Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiefer, D.

  • Google
  • 2
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Real-time stress evolution during laser surface line hardening at varying maximum surface temperatures using synchrotron X-ray diffraction4citations
  • 2019Experimental and Simulative Studies on Residual Stress Formation for Laser-Beam Surface Hardening*9citations

Places of action

Chart of shared publication
Beckmann, F.
1 / 28 shared
Simon, N.
1 / 1 shared
Wilde, F.
1 / 7 shared
Gibmeier, J.
2 / 36 shared
Mühl, F.
1 / 2 shared
Schüssler, P.
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Beckmann, F.
  • Simon, N.
  • Wilde, F.
  • Gibmeier, J.
  • Mühl, F.
  • Schüssler, P.
OrganizationsLocationPeople

article

Experimental and Simulative Studies on Residual Stress Formation for Laser-Beam Surface Hardening*

  • Mühl, F.
  • Gibmeier, J.
  • Schüssler, P.
  • Kiefer, D.
Abstract

<jats:title>Abstract</jats:title><jats:p>The results of high spatially resolved X-ray diffraction (XRD) analyses of residual stresses in laser-line hardened 42CrMo4 tempering steel samples are comparedwith the results of numerical process simulations and carefully discussed. Samples were locally line hardened at different maximum temperatures (950 °C, 1150 °C) and with different laser-beam feeds (200 mm/min, 800 mm/min) for the investigations. In addition to X-ray diffraction analyses, the effect of the process parameters on the formation of local microstructures was also examined. The results show that experimentally determined compressive residual stresses in process zones transverse and parallel to the laser track increase as temperatures decrease and feed increases. The dimensions of hardened zones (width, depth) affected by laser hardening at lower maximum temperatures are clearly smaller than those affected by laser hardening at higher temperatures, whilst the impact of laser-beam feed is less pronounced. A new model was developed for numerical simulation of laser-line hardening processes, showing good agreement between numerically calculated and experimentally determined microstructures in the process zones. The results of residual stresses calculated by simulation also exhibit good qualitative and largely also quantitative agreement with experimentally determined residual stresses. Partly, the simulation predicts some local deviations in the distribution of residual stresses.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • x-ray diffraction
  • simulation
  • laser emission spectroscopy
  • steel
  • tempering