People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Madaoui, Noureddine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of deposition time on properties of the ZnO by USD Method
Abstract
<jats:p>This investigation aims to improve the properties of 304 L stainless steel (SS) substrates for use in corrosion, mechanical, and biomedical applications by depositing ZnO thin films. The ultrasonic spraying technique was used to prepare ZnO thin films with depositional times of 1, 4, and 9 minutes. XRD and Raman studied the surface characteristics of ZnO samples. XRD analysis revealed a hexagonal structure with an average crystallite size of 22 nm for ZnO. Indentation nano measurements indicated an increase in the hardness of the films examined. To determine the type of conductivity and estimate the charge carrier density, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis were performed. The thin film deposited for 9 minutes was found to be the most effective in improving corrosion resistance.</jats:p>