People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tzortzinis, Georgios
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networkscitations
- 2024Vibration-based ice monitoring of composite blades using artificial neural networks under different icing conditions
- 2024PBT-based polymer composites modified with carbon fillers with potential use of strain gauges
- 2024Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methodscitations
Places of action
Organizations | Location | People |
---|
document
Vibration-based ice monitoring of composite blades using artificial neural networks under different icing conditions
Abstract
Cold climates pose significant challenges for wind turbines, primarily due to icing complications that influence electrical energy production. Precise methods are needed to identify and predict ice distribution on blades. Thus, enhancing prediction of ice accumulation based on the blade’s frequency response. The study involves using glass fiber reinforced plastic composite rotor blades equipped with actuators and accelerometers to measure the response of the blade subjected to icing, with a total of 1700 measurements. Small-scale icing experiments are conducted inside a climate chamber at temperatures from −10 ◦C to −20 ◦C with seven icing distribution profiles on the blades. The gathered data are analyzed for the effects of icing on the frequency response of the blades. Additionally, we propose the use of optimized artificial neural networks to predict the accumulated ice thickness on rotor blades with a weighted mean absolute percentage error of 5.1 %, and ice volume and ice mass with an error of 5.7 %, based on the frequency response. Overall, this paper investigates the relation between icing, with regard to ice mass, ice location, and ambient temperature, and frequency response of wind turbine blades, along with proposing a high-performance method for ice detection and monitoring during operation.