People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Yang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Spin injection in graphene using ferromagnetic indium-cobalt van der Waals contacts
- 2024Sensitivity of G0 and stress-strain relation of geomaterials to grain shape and surface roughness
- 2024Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%
- 2023Study of surface damage in silicon by irradiation with focused rubidium ions using a cold-atom ion sourcecitations
- 2023Near-surface characterization using Distributed Acoustic Sensing in an urban area: Granada, Spain
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cellscitations
- 2023Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystemscitations
- 2022Fiber orientation dependence of tribological behavior of short carbon fiber reinforced ceramic matrix compositescitations
- 2022Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxidescitations
- 2021Premelting and formation of ice due to Casimir-Lifshitz interactions: Impact of improved parameterization for materials ; ENEngelskEnglishPremelting and formation of ice due to Casimir-Lifshitz interactions: Impact of improved parameterization for materialscitations
- 2021Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskitescitations
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinkingcitations
- 2019Electrochemical metallization ReRAMs (ECM) - Experiments and modellingcitations
- 2019Volumetric Bioprinting of Complex Living-Tissue Constructs within Secondscitations
- 2018Magnetically activated microcapsules as controlled release carriers for a liquid PDMS cross-linkercitations
- 2016Transient phases during fast crystallization of organic thin films from solutioncitations
- 2014Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cellscitations
- 2012Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3gate stack: study of Ge auto-doping and p-type Zn doping
- 2009Lanthanide N,N '-piperazine-bis(methylenephosphonates) (Ln = La, Ce, Nd) that display flexible frameworks, reversible hydration and cation exchangecitations
- 2007Confinement of Thermoresponsive Hydrogels in Nanostructured Porous Silicon Dioxide Templatescitations
- 2007Confinement of Thermoresponsive Hydrogels in Nanostructured Porous Silicon Dioxide Templatescitations
- 2005Synthesis and characterization of CdS quantum dots in polystyrene microbeadscitations
Places of action
Organizations | Location | People |
---|
document
Near-surface characterization using Distributed Acoustic Sensing in an urban area: Granada, Spain
Abstract
<jats:p>The Granada Basin in southeast Spain is an area of moderate seismicity. Yet, it hosts some of the highest seismic hazards in the Iberian Peninsula due to the presence of shallow soft sediments amplifying local ground motion. In urban areas, seismic measurements often suffer from sparseinstrumentation. An enticing alternative to conventional seismometers is the Distributed Acoustic Sensing (DAS) technology that can convert fiber-optic telecommunication cables into dense arrays of seismic sensors. In this study, we perform a shallow structure analysis using the ambient seismic field interferometry method. We use a DAS array field test in the city of Granadaobtained on August 26th and 27th, 2020, using a telecommunication fiber. In addition to the existing limitations of using DAS with unknown fiber-ground coupling conditions, the complex geometry of the fiber and limited data recording duration further challenge the extraction of surface wave information from the ambient seismic field in such an urban environment. Therefore, wedevelop an ad-hoc processing scheme in which we incorporate a frequency-wavenumber (f−k) filter to enhance the quality of the virtual shot gathers and related multi-mode dispersion images. We are able to employ this dataset to generate several shear-wave velocity (VS) profiles for different sections of the cable. The shallow VS structure shows a good agreement with different geological conditions of soil deposits. This study demonstrates that DAS could provide insightsinto soil characterization and seismic microzonation in urban areas. In addition, the results contribute to a better understanding of local site response to ground motion.</jats:p>