People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miranda, Rm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Evaluation of the amount of nanoparticles emitted in LASER additive manufacture/weldingcitations
- 2017Experimental characterization of nanoparticles emissions during Laser Shock Processing of AA6061, AISI304 and Ti6Al4V
- 2017Determination of "safe" and "critical" nanoparticles exposure to welders in a workshopcitations
- 2015Assessment and control of nanoparticles exposure in welding operations by use of a Control Banding Toolcitations
- 2014The effect of metal transfer modes and shielding gas composition on the emission of ultrafine particles in MAG steel weldingcitations
- 2014EMISSION OF NANOPARTICLES DURING FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYScitations
- 2014Characterization of airborne particles generated from metal active gas welding processcitations
- 2012Comparison of deposited surface area of airborne ultrafine particles generated from two welding processescitations
- 2006Fume emissions during gas metal arc weldingcitations
- 2005Analysis of welding fumes: A short note on the comparison between two sampling techniquescitations
Places of action
Organizations | Location | People |
---|
article
Characterization of airborne particles generated from metal active gas welding process
Abstract
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.