People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pham, Bao T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Preparation and physicochemical evaluation of a new tacrolimus tablet formulation for sublingual administration
Abstract
The aim of this study was to develop a new fast-disintegrating tablet formulation containing 1mg tacrolimus for sublingual application. First, solid dispersions containing tacrolimus (2.5%, 5% and 10% w/w) incorporated in Ac-Di-Sol®and carriers (inulin 1.8kDa and 4kDa, and polyvinylpyrrolidone (PVP) K30) were prepared by freeze drying. Subsequently, a tablet formulation composed of a mixture of the solid dispersions, Ac-Di-Sol®, mannitol, Avicel®PH-101 and sodium stearyl fumarate was optimized concerning drug load in the solid dispersions and the type of carrier. Tablet weight was kept constant at 75mg by adjusting the amount of Avicel®PH-101. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) results indicated the absence of the drug in the crystalline state, which was confirmed by the scanning electron microscopy (SEM). These results suggest that tacrolimus incorporated in all of the solid dispersions was fully amorphous. Dissolution of the tablets containing solid dispersions with a low drug load highly depends on the type of carrier and increased in the order: PVP K30 <inulin 4kDa <inulin 1.8kDa. Solid dispersions with a drug load of 10% w/w incorporated in the carriers yielded optimal formulations. In addition, the physicochemical characteristics and the dissolution behavior of the tablet formulation containing inulin 1.8 kDa-based solid dispersions with a drug load of 10% w/w did not change after storage at 20°C/45%RH for 6 months indicating excellent storage stability. © 2012 Informa Healthcare USA, Inc.