People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raum, Kay
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024The respective and dependent effects of scattering and bone matrix absorption on ultrasound attenuation in cortical bone.citations
- 2021Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopycitations
- 2020Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neckcitations
- 2019Large cortical bone pores in the tibia are associated with proximal femur strengthcitations
- 2019Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering.citations
- 2016Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties.citations
- 2015Distribution of mesoscale elastic properties and mass density in the human femoral shaft.citations
- 2014Ultrasound to assess bone quality.citations
- 20143D Raman mapping of the collagen fibril orientation in human osteonal lamellae.citations
- 2014On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment.citations
- 2014Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation.citations
- 2014Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model.citations
- 2014Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1citations
- 2009Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison with Nanoindentation
Places of action
Organizations | Location | People |
---|
article
Distribution of mesoscale elastic properties and mass density in the human femoral shaft.
Abstract
Cortical bone properties are determined by tissue composition and structure at several hierarchical length scales. In this study, the spatial distribution of micro- and mesoscale elastic properties within a human femoral shaft has been investigated. Microscale tissue degree of mineralization (DMB), cortical vascular porosity Ct.Po and the average transverse isotropic stiffness tensor C(Micro) of cylindrical-shaped samples (diameter: 4.4 mm, N = 56) were obtained from cortical regions between 20 and 85% of the total femur length and around the periphery (anterior, medial, posterior and lateral quadrants) by means of synchrotron radiation µCT (SRµCT) and 50-MHz scanning acoustic microscopy (SAM). Within each cylinder, the volumetric bone mineral density (vBMD) and the mesoscale stiffness tensor C(Meso) were derived using a numerical homogenization approach. Moreover, microelastic maps of the axial elastic coefficient c33 measured by SAM at distinct cross-sectional locations along the femur were used to construct a 3-D multiscale elastic model of the femoral shaft. Variations of vBMD (6.1%) were much lower than the variations of mesoscale elastic coefficients (11.1-21.3%). The variation of DMB was only a minor predictor for variations of the mesoscale elastic properties (0.05 ≤ R(2) ≤ 0.34). Instead, variations of the mesoscale elastic properties could be explained by variations of cortical porosity and microscale elastic properties. These data were suitable inputs for numerical evaluations and may help to unravel the relations between structure and composition on the elastic function in cortical bone.