People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vollprecht, Daniel
University of Augsburg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Evaluation of improvements in the separation of monolayer and multilayer films via measurements in transflection and application of machine learning approachescitations
- 2022Qualitative analysis of post-consumer and post-industrial waste via near-infrared, visual and induction identification with experimental sensor-based sorting setupcitations
- 2020Dense glass‐ceramics by fast sinter‐crystallization of mixtures of waste‐derived glassescitations
- 2020X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface propertiescitations
- 2020Recovery of Molybdenum, Chromium, Tungsten, Copper, Silver, and Zinc from Industrial Waste Waters Using Zero-Valent Iron and Tailored Beneficiation Processescitations
- 2019Quality assessment of nonferrous metals recovered from landfill mining: a case study in Belgiumcitations
- 2019QUALITY ASSESSMENT OF NONFERROUS METALS RECOVERED BY MEANS OF LANDFILL MININGcitations
- 2019RELATING MAGNETIC PROPERTIES OF MUNICIPAL SOLID WASTE CONSTITUENTS TO IRON CONTENT – IMPLICATIONS FOR ENHANCED LANDFILL MININGcitations
- 2019Potential of sensor-based sorting in enhanced landfill miningcitations
- 2019CASE STUDY ON ENHANCED LANDFILL MINING AT MONT-SAINTGUIBERT LANDFILL IN BELGIUMcitations
- 2018Recovery of Metals from Industrial Waste Waters
- 2018Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: A critical reviewcitations
- 2018Characterization of Fine Fractions from Landfill Mining: A Review of Previous Investigationscitations
Places of action
Organizations | Location | People |
---|
article
CASE STUDY ON ENHANCED LANDFILL MINING AT MONT-SAINTGUIBERT LANDFILL IN BELGIUM
Abstract
(Enhanced) landfill mining ((E)LFM) projects have been mainly driven by land reclamation, environmental pollution mitigation and remediation of old landfills and dumpsites, among others. However, previous studies have also shown that these sites may be a relevant source of secondary raw materials. In this respect and within the framework of the “EU Training Network for Resource Recovery through Enhanced Landfill Mining – NEW-MINE”, around 374 Mg of waste was excavated from a landfill site in the municipality of Mont-Saint-Guibert, Belgium, as part of a case study to evaluate the full implementation of ELFM. The excavated landfilled material was pre-processed with a ballistic separator onsite directly after excavation, with which the fine fractions (material <90 mm) were obtained. Subsequently, samples of the fine fractions were characterized in order to determine their main properties and material composition. According to these strategies a chain of mechanical processing steps was selected and tested in the processing of the fine fractions in the optimal water content (15 wt.% WC) and dry states. The mechanical processing in the dry state yielded total amounts of 41.9-43.9 wt.% DM fine fractions <4.5 mm, 35.9-39.0 wt.% DM inert materials, 7.4-10.0 wt.% DM combustible materials, 1.2-1.8 wt.% DM ferrous metals and 0.2-0.4 wt.% DM non-ferrous metals. These figures suggest that a significant share of the fine fractions could be recovered through the tested mechanical processing approach, which might contribute to the overall economic and environmental feasibility of the project in case of implementing full scale (E)LFM at the studied landfill site.