People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vollprecht, Daniel
University of Augsburg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Evaluation of improvements in the separation of monolayer and multilayer films via measurements in transflection and application of machine learning approachescitations
- 2022Qualitative analysis of post-consumer and post-industrial waste via near-infrared, visual and induction identification with experimental sensor-based sorting setupcitations
- 2020Dense glass‐ceramics by fast sinter‐crystallization of mixtures of waste‐derived glassescitations
- 2020X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface propertiescitations
- 2020Recovery of Molybdenum, Chromium, Tungsten, Copper, Silver, and Zinc from Industrial Waste Waters Using Zero-Valent Iron and Tailored Beneficiation Processescitations
- 2019Quality assessment of nonferrous metals recovered from landfill mining: a case study in Belgiumcitations
- 2019QUALITY ASSESSMENT OF NONFERROUS METALS RECOVERED BY MEANS OF LANDFILL MININGcitations
- 2019RELATING MAGNETIC PROPERTIES OF MUNICIPAL SOLID WASTE CONSTITUENTS TO IRON CONTENT – IMPLICATIONS FOR ENHANCED LANDFILL MININGcitations
- 2019Potential of sensor-based sorting in enhanced landfill miningcitations
- 2019CASE STUDY ON ENHANCED LANDFILL MINING AT MONT-SAINTGUIBERT LANDFILL IN BELGIUMcitations
- 2018Recovery of Metals from Industrial Waste Waters
- 2018Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: A critical reviewcitations
- 2018Characterization of Fine Fractions from Landfill Mining: A Review of Previous Investigationscitations
Places of action
Organizations | Location | People |
---|
article
Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: A critical review
Abstract
Multiple landfill mining investigations of municipal solid waste landfills have been carried out worldwide in the past decades. Some of these studies have led to the conclusion that landfill mining is not feasible and could represent more of a problem than a solution for old landfill sites. This is the case to a certain extent because, to this day, material and energy recovery in landfill mining has been restricted to the coarse fractions (>10 mm to >60 mm) in most projects, while the fine fractions (<10 mm to <60 mm) have been often re-directed to the landfill with poor or no treatment at all despite their recovery potential. The fine fractions account for 40-80 wt.% of the total amount of the landfill-mined material. Its material composition is characterized by about 40-80 wt.% decomposed organic matter or weathered mineral fractions which cannot be hand-sorted, followed by significant amounts of calorific fractions and a small amount of metals. The main chemical compound found in landfill mining fine fractions is SiO2, mostly present as quartz and minor amounts of sheet silicates, followed by CaO, mostly present in carbonate minerals. MgO, Fe2O3 and Al2O3 represent minor components. Heavy metals are present in concentrations of few to several hundreds of mg/kg without a clear general trend of enrichment compared to the coarse fractions. In contrast, the net calorific value of the fine fractions (about 3-9 MJ/kg DM) can be several times lower than that of the coarse fractions (about 10-30 MJ/kg DM). These data clearly indicate that both a mineral fraction for waste-to-material and a calorific fraction for waste-to-energy might be recovered if suitable mechanical processing technologies can be employed. The potential of the fine fractions for material and energy recovery, as well as the main technological challenges to unlock it, are the main topics discussed in the present review article. This article has been elaborated within the framework of the EU Training Network for Resource Recovery through Enhanced Landfill Mining – NEW-MINE.