Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mangi, Sajjad Ali

  • Google
  • 3
  • 8
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concrete5citations
  • 2020Establishment of Strength Prediction Equation for Concrete Containing Coal Bottom Ash Exposed to Aggressive Environmentcitations
  • 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawater16citations

Places of action

Chart of shared publication
Ibrahim, Mohd Haziman Wan
2 / 20 shared
Juki, Mohd Irwan
1 / 3 shared
Khahro, Shabir Hussain
1 / 1 shared
Jamaluddin, Norwati
2 / 18 shared
Shahidan, Shahiron
1 / 7 shared
Wan Ibrahim, Mohd Haziman
1 / 22 shared
Arshad, Mohd Fadzil
1 / 12 shared
Memon, Sheeraz
1 / 3 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Ibrahim, Mohd Haziman Wan
  • Juki, Mohd Irwan
  • Khahro, Shabir Hussain
  • Jamaluddin, Norwati
  • Shahidan, Shahiron
  • Wan Ibrahim, Mohd Haziman
  • Arshad, Mohd Fadzil
  • Memon, Sheeraz
OrganizationsLocationPeople

article

Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concrete

  • Mangi, Sajjad Ali
  • Ibrahim, Mohd Haziman Wan
  • Juki, Mohd Irwan
Abstract

<jats:p>Coal Bottom Ash (CBA) is the waste material produced by coal-based power plants, particularly in Malaysia around 1.7 million tons of CBA was produced annually, which is major environmental concern. Therefore, the use of CBA as a partial replacement of cement in concrete is a possible solution for that pollution; this approach also creates a new corridor in the field of concrete production. However, this study aims to evaluate the effects of CBA as cementitious material on the concrete properties. This study incorporated 10% CBA as a cement replacement by weight method in concrete. However, concrete samples were prepared with and without CBA and immersed in water for 7, 28, 56 and 90 days. Next, the performances of concrete with and without CBA were evaluated in terms of workability, compressive strength, and rapid chloride permeability test. It was found that due to presence of CBA in concrete, workability reduces; no substantial growth in compressive strength at the early ages but substantial rise in strength was noticed after 56 days. Almost 4.7% higher strength was recorded than the control specimens at 90 days. Besides that, concrete containing CBA has lower chloride penetration as compared to the control specimen, which shows its better durability performance. It can be concluded that CBA has an enormous potential to be utilized as a cementitious material in durable concrete production.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • cement
  • permeability
  • durability