People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arshad, Mohd Fadzil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawatercitations
- 2019Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Pastecitations
- 2019Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawatercitations
- 2019Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious materialcitations
- 2019Recycling of Coal Ash in Concrete as a Partial Cementitious Resourcecitations
- 2018Dynamic Mechanical Analysis of Waste Polyethylene Terephthalate Bottlecitations
- 2018A Review on Potential use of Coal Bottom Ash as a Supplementary Cementing Material in Sustainable Concrete Constructioncitations
- 2018Physical and Chemical Properties of Rice Husk Ash Concrete Under Seawatercitations
- 2018Strength Properties of Rice Husk Ash Concrete Under Sodium Sulphate Attackcitations
- 2018Compressive and Flexural Strength of Concrete Containing Palm Oil Biomass Clinker with Hooked-End Steel Fiberscitations
- 2018Influence of ground coal bottom ash on the properties of concretecitations
- 2016Fresh properties and flexural strength of self-compacting concrete integrating coal bottom ashcitations
Places of action
Organizations | Location | People |
---|
article
Physical and Chemical Properties of Rice Husk Ash Concrete Under Seawater
Abstract
The physical and chemical properties of rice rusk ash concrete under seawater attack are evaluated based on thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. A rice husk ash dosage of 10% by weight of binder was used throughout the experiments. The results clearly showed that RHA can be satisfactorily used as a cement replacement material in order to increases the durability of concrete under seawater attack. The used of RHA as cement replacement in concrete reduced the quantities of ettringite and gypsum formation. The results indicated that blended cement prepared with RHA reduced the potential for the formation of ettringite and gypsum due to the reduction in the quantity of calcium hydroxide and C3A, and thus improved the resistance of concrete to seawater attack. Furthermore, more formation of ettringite and gypsum was observed from Portland cement concrete compared to the RHA blended cement. Finally, it can be concluded that calcium hydroxide (Ca(OH)2) can be reduce when ground RHA is used as partially replacement cement.