Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Markovic, Svetislav

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Influence of different hard-facing procedures on quality of surfaces of regenerated gears2citations

Places of action

Chart of shared publication
Nikolic, Ruzica
1 / 8 shared
Hadzima, Branislav
1 / 5 shared
Arsić, Dušan
1 / 19 shared
Ulewicz, Robert
1 / 10 shared
Lazic, Vukic
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Nikolic, Ruzica
  • Hadzima, Branislav
  • Arsić, Dušan
  • Ulewicz, Robert
  • Lazic, Vukic
OrganizationsLocationPeople

article

Influence of different hard-facing procedures on quality of surfaces of regenerated gears

  • Nikolic, Ruzica
  • Hadzima, Branislav
  • Arsić, Dušan
  • Ulewicz, Robert
  • Lazic, Vukic
  • Markovic, Svetislav
Abstract

<jats:title>Abstract</jats:title><jats:p>During the process of regeneration of machine parts, certain phenomena occur that have a significant impact on the loss of their working ability. Hereditary properties are expressed by the interdependence of geometric and physical-mechanical-metallurgical parameters of gear teeth created during the technological operations of regeneration of worn teeth by hard-facing. The influence of the type of additional material (electrodes and their combinations) on the tribological characteristics of welded gear teeth was considered, whereby the so-called hard additional materials were applied. Those are the additional materials that give the required surface hardness of the teeth without subsequent thermal or thermochemical treatment. This research did not involve the regeneration of specific worn gears removed from machine systems, but the new gears were made, which were then damaged and then regenerated by hard-facing using the shielded metal arc welding (SMAW) procedure. Thus, all the tested gears were made of the same material, belonged to one batch and were machined on the same machines with the same machining regimes. The tests were performed on samples made of 20MnCr5 steel for cementation, on a tribometer by the “block on disc” method, which was designed to simulate the operating conditions of coupled teeth of concrete gears in the exploitation conditions. Based on the conducted tribological tests, the average coefficients of friction and topography of the surfaces were determined by measuring the wear trace and it was defined which additional materials give the best tribological characteristics of the surfaces of gears regenerated by hard-facing.</jats:p>

Topics
  • surface
  • steel
  • hardness