People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ulewicz, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Influence of TiN Coating on the Drawing Force and Friction Coefficient in the Deep Drawing Process of AlMg4.5Mn0.7 Thin Sheetscitations
- 2022Analysis of Filler Metals Influence on Quality of Hard-Faced Surfaces of Gears Based on Tests in Experimental and Operating Conditionscitations
- 2021Influence of different hard-facing procedures on quality of surfaces of regenerated gearscitations
- 2017The effect of alloying method on the structure and properties of sintered stainless steelcitations
- 2016Influence of selected technological factors on fatigue strength
- 2015Influence of Electrodeposited Coatings on Ultra-High-Cycle Fatigue Life of S235 Structural Steelcitations
- 2014Structure and mechanical properties of fine-grained steelscitations
- 2014The impact of welding wire on the mechanical properties of welded joints
- 2013Fatigue testing structural steel as a factor of safety of technical facilities maintenance
- 2013DEPENDANCE BETWEEN CHARGE COMPOSITION AND FATIGUE PROPERTIES OF NODULAR CAST IRONS
Places of action
Organizations | Location | People |
---|
article
Influence of different hard-facing procedures on quality of surfaces of regenerated gears
Abstract
<jats:title>Abstract</jats:title><jats:p>During the process of regeneration of machine parts, certain phenomena occur that have a significant impact on the loss of their working ability. Hereditary properties are expressed by the interdependence of geometric and physical-mechanical-metallurgical parameters of gear teeth created during the technological operations of regeneration of worn teeth by hard-facing. The influence of the type of additional material (electrodes and their combinations) on the tribological characteristics of welded gear teeth was considered, whereby the so-called hard additional materials were applied. Those are the additional materials that give the required surface hardness of the teeth without subsequent thermal or thermochemical treatment. This research did not involve the regeneration of specific worn gears removed from machine systems, but the new gears were made, which were then damaged and then regenerated by hard-facing using the shielded metal arc welding (SMAW) procedure. Thus, all the tested gears were made of the same material, belonged to one batch and were machined on the same machines with the same machining regimes. The tests were performed on samples made of 20MnCr5 steel for cementation, on a tribometer by the “block on disc” method, which was designed to simulate the operating conditions of coupled teeth of concrete gears in the exploitation conditions. Based on the conducted tribological tests, the average coefficients of friction and topography of the surfaces were determined by measuring the wear trace and it was defined which additional materials give the best tribological characteristics of the surfaces of gears regenerated by hard-facing.</jats:p>