People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ebel, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Tuning surface defect states in sputtered titanium oxide electron transport layers for enhanced stability of organic photovoltaicscitations
- 2024Tuning surface defect states in sputtered titanium oxide electron transport layers for enhanced stability of organic photovoltaicscitations
- 2024Tuning Surface Defect States in Sputtered Titanium Oxide Electron Transport Layers for Enhanced Stability of Organic Photovoltaicscitations
- 2024Processability of Mg-Gd Powder via Friction Extrusioncitations
- 2024Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couplecitations
- 2024Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couplecitations
- 2024Surfactant-Modified Nanocomposite Thin-Film Capacitors
- 2024Developing Novel Self Healable Capacitor Materials with Improved Thermostability
- 2023Additive manufacturing of materials with embedded electrically conductive paths and their applications
- 2023Additive manufacturing of materials with embedded electrically conductive paths and their applications
- 2023The role of electron extinction in the breakdown strength of nanocomposite capacitors
- 2023The role of electron extinction in the breakdown strength of nanocomposite capacitors
- 2023High-oxygen MIM Ti-6Al-7Nb ::microstructure, tensile and fatigue propertiescitations
- 2023Power Capacitors – state of the art technology review and an outlook into the future
- 2023Nanoscale thinning of metal-coated polypropylene films by Helium-ion irradiation
- 2023Nanoscale thinning of metal-coated polypropylene films by Helium-ion irradiation
- 2022Theory of electrical breakdown in a nanocomposite capacitorcitations
- 2022Theory of electrical breakdown in a nanocomposite capacitorcitations
- 2022Layer-by-layer printable nano-scale polypropylene for precise control of nanocomposite capacitor dielectric morphologies in metallised film capacitorscitations
- 2022Layer-by-layer Printed Dielectrics
- 2022Theoretical investigation of the nanoinclusions shape impact on the capacitance of a nanocomposite capacitorcitations
- 2022Theoretical investigation of the nanoinclusions shape impact on the capacitance of a nanocomposite capacitorcitations
- 2022The effects of oxygen on the fatigue behaviour of MIM Ti-6Al-7Nb alloy
- 2022Fundamental understanding of the influence of oxygen on the fatigue behaviour of To-6Al-7Nb alloys
- 2022How to determine the capacitance of a nanocomposite capacitorcitations
- 2022How to determine the capacitance of a nanocomposite capacitorcitations
- 2022Layer-by-layer Printed Dielectrics:Scalable Nanocomposite Capacitor Fabrication for the Green Transition
- 2021Superior fatigue endurance exempt from high processing cleanliness of Metal-Injection-Molded β Ti-Nb-Zr for bio-tolerant applicationscitations
- 2020Influence of alloying elements in fatigue properties of α/β Titanium alloyscitations
- 2015The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti–45Al–5Nb–0.2B–0.2Ccitations
- 2001Magnetic properties of rare-earth transition metal aluminides R6T4Al43 with Ho6Mo4Al43-type structurecitations
Places of action
Organizations | Location | People |
---|
document
Surfactant-Modified Nanocomposite Thin-Film Capacitors
Abstract
<p>This paper discusses the potential and importance of interface engineering of barium titanate nanoparticles for dielectric capacitors. The BaTiO3 nanoparticles were dispersed in a polypropylene gel with the aid of two types of surfactants: an ionic sodium dodecyl sulfate (SDS) and a nonionic Triton X-100. Optical microscopy and light scattering analyses revealed a notable decrease in nanoparticle agglomeration within the polypropylene gel when surfactants were employed, which could reach the diameter of a single nanoparticle. Dielectric capacitors were manufactured through multi-layer spin coating. The capacitor comprised top and bottom layers of neat polypropylene with three intermediary nanocomposite layers. Comparative analysis showcased a 37% increase in the dielectric constant of capacitors utilizing the ionic surfactant compared to the nonionic alternative, and a 23% increase over the devices without any surfactant. Conversely, the incorporation of the nonionic surfactant resulted in a 140% surge in dielectric strength compared to devices with the ionic surfactant. Overall, devices with the nonionic surfactant exhibited an energy density exceeding four times that of the ionic surfactant, and double that of biaxially oriented or spin-coated polypropylene devices. Thus, interface engineering emerges as a promising and efficient strategy for enhancing nanoparticle dispersibility in polypropylene, consequently elevating the energy density of film capacitors.</p>