Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sampath, Krishna

  • Google
  • 3
  • 2
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Application of Machine Learning to Regression Analysis of a Large SMA Weld Metal Database4citations
  • 2022Metallurgical Design Rules for High-Strength Steel Weld Metals4citations
  • 2021Analysis of a High-Strength Steel SMAW Database6citations

Places of action

Chart of shared publication
Varadarajan, Rajan
1 / 1 shared
Society, American Welding
3 / 10 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Varadarajan, Rajan
  • Society, American Welding
OrganizationsLocationPeople

article

Application of Machine Learning to Regression Analysis of a Large SMA Weld Metal Database

  • Sampath, Krishna
  • Varadarajan, Rajan
  • Society, American Welding
Abstract

<jats:p>A machine learning approach was used to perform a regression analysis of Evans’s shielded metal arc (SMA) weld metal (WM) database involving several groups of Fe-C-Mn high-strength steels. The objective of this investigation was to develop an expression for austenite-to-ferrite (Ar3) transformation temperature that also included the effects of principal and minor alloy elements (in wt-%) and weld cooling rate (in °C/s) and relate this expression with WM ultimate tensile strength (UTS). The Ar3 data from 257 records obtained from several selected sources were combined with Ar3 projections at extreme end points in Evans’s WM database.Subsequently, a cluster analysis was performed. The data in Evans’s database was filtered with the carbon equivalent number limited to 0.3 maximum, carbon content limited to 0.1 wt-% maximum, nitrogen content limited to 99 ppm (0.0099 wt-%) maximum, preassigned Ar3 values limited to 680°C minimum, and WM UTS limited to 710 MPa maximum. The results provided a good approximation to the expression for Ar3 transformation temperature in terms of elemental compositions and cooling rate. This allowed the Ar3 to correlate with WM UTS of Fe-C-Mn in at least four ways depending on the sign of correlation of the data clusters.The elemental combinations in the cluster with the highest negative correlation revealed highly predictable WM UTS. In particular, the new Ar3 expression helped to predict decreases observed in certain Ar3 experimental data on WMs with balanced Ti, B, Al, N, and O additions reported among 13 records with additional dilatometry results.This correlation between the new expression for the Ar3 temperature and UTS of Fe-C-Mn WM is expected to complement the Japan Welding Engineering Society artificial neural network model currently available to predict Charpy V-notch test temperature for 28 J absorbed energy based on WM chemical composition. It will thereby provide a pair of effective tools for efficient development and/or evaluation of high-performance welding electrodes based on an Fe-C-Mn system for demand-critical applications.</jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • Carbon
  • Nitrogen
  • strength
  • steel
  • tensile strength
  • machine learning
  • carbon content
  • dilatometry