Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rogers, Matthew

  • Google
  • 5
  • 34
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Thin film epitaxial [111] Co$$_{50}$$Pt$$_{50}$$: structure, magnetisation, and spin polarisationcitations
  • 2022The Toughness of High-Strength Steel Weld Metals5citations
  • 2017Emergent magnetism at transition-metal–nanocarbon interfaces22citations
  • 2017Emergent magnetism at transition-metal–nanocarbon interfaces22citations
  • 2017Emergent magnetism at transition-metal–nanocarbon interfaces22citations

Places of action

Chart of shared publication
Satchell, N.
1 / 6 shared
Burnell, G.
1 / 17 shared
Maheshwari, M.
1 / 3 shared
Cespedes, O.
1 / 12 shared
Gupta, S.
1 / 15 shared
Shepley, P. M.
1 / 3 shared
Dai, Tao
1 / 1 shared
Tzelepis, Demetrios A.
1 / 2 shared
Vieau, Katherine
1 / 1 shared
Society, American Welding
1 / 10 shared
Sebeck, Katherine
1 / 1 shared
Kyle, Douglas
1 / 1 shared
Feng, Zhili
1 / 2 shared
David, S. A.
1 / 1 shared
Hickey, Bj
1 / 4 shared
Prokscha, Thomas
3 / 15 shared
Luetkens, Hubertus
3 / 10 shared
Alghamdi, Shoug
3 / 3 shared
Burnell, Gavin
3 / 9 shared
Flokstra, Machiel
2 / 2 shared
Al Mamari, Fatma
2 / 3 shared
Cespedes, Oscar
3 / 10 shared
Lee, Stephen
2 / 2 shared
Valvidares, Manuel
2 / 17 shared
Teobaldi, Gilberto
3 / 7 shared
Gargiani, Pierluigi
3 / 22 shared
Moorsom, Timothy
3 / 6 shared
Stewart, Rhea
3 / 6 shared
Ali, Mannan
3 / 4 shared
Hickey, B. J.
2 / 8 shared
Mamari, Fatma Al
1 / 1 shared
Valvidare, Manuel
1 / 1 shared
Flokstra, Machiel Geert
1 / 4 shared
Lee, Stephen Leslie
1 / 14 shared
Chart of publication period
2023
2022
2017

Co-Authors (by relevance)

  • Satchell, N.
  • Burnell, G.
  • Maheshwari, M.
  • Cespedes, O.
  • Gupta, S.
  • Shepley, P. M.
  • Dai, Tao
  • Tzelepis, Demetrios A.
  • Vieau, Katherine
  • Society, American Welding
  • Sebeck, Katherine
  • Kyle, Douglas
  • Feng, Zhili
  • David, S. A.
  • Hickey, Bj
  • Prokscha, Thomas
  • Luetkens, Hubertus
  • Alghamdi, Shoug
  • Burnell, Gavin
  • Flokstra, Machiel
  • Al Mamari, Fatma
  • Cespedes, Oscar
  • Lee, Stephen
  • Valvidares, Manuel
  • Teobaldi, Gilberto
  • Gargiani, Pierluigi
  • Moorsom, Timothy
  • Stewart, Rhea
  • Ali, Mannan
  • Hickey, B. J.
  • Mamari, Fatma Al
  • Valvidare, Manuel
  • Flokstra, Machiel Geert
  • Lee, Stephen Leslie
OrganizationsLocationPeople

article

The Toughness of High-Strength Steel Weld Metals

  • Dai, Tao
  • Tzelepis, Demetrios A.
  • Vieau, Katherine
  • Society, American Welding
  • Sebeck, Katherine
  • Rogers, Matthew
  • Kyle, Douglas
  • Feng, Zhili
  • David, S. A.
Abstract

<jats:p>Low-temperature phase transformation (LTPT) welding consumables are a new class of welding wires developed to mitigate hydrogen-induced cracking in the welding of high-strength steels without preheating or postweld heat treatment. LTPT weld metals have a high strength, but their toughness needs further investigation. LTPT weld metals predominately contain a martensite microstructure, which is necessary to achieve high strength; however, martensitic weld metals containing oxide inclusions have relatively poor toughness. Three welding processes — gas metal arc welding (GMAW), gas tungsten arc welding (GTAW), and hot wire GTAW — were investigated. Optical microscopy, scanning electron microscopes, and transmission electron microscopes were employed for characterization. The role of the shielding gas in the formation of oxide inclusions in LTPT weld metals was investigated. The formation of oxide inclusions in the weld metals was related to the CO2 in the shielding gas. When 100% Ar or a pure inert shielding gas mixture was used for all three welding processes, oxide inclusions were greatly reduced, and the weld metal toughness improved considerably, matching the base metal toughness. The mechanism by which inclusions promote fracture propagation in the weld metal was proposed.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • inclusion
  • phase
  • strength
  • steel
  • Hydrogen
  • optical microscopy
  • tungsten
  • wire