People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tetlow, Will
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Photonic Curing for Emerging Photovoltaic Absorbers
Abstract
Solar cells are among the most developed technologies in the renewable energy sector, not only academically, but also commercially. In this context, thin-film photovoltaics (based on emerging absorbers like perovskites, Sb2Se3, CZTS etc.) provide an excellent opportunity to expand the reach of solar energy production, thanks to the promising efficiencies combined with light-weight and flexibility. However, for many of these emerging materials, moderate/high temperature annealing (150-300 °C) is required, and the necessary temperature often limits the usable substrates. Photonic curing (also known as flash annealing) could represent a way to overcome this limitation and really unlock the potential of thin film photovoltaics. In this technique, heat is created by the absorption of strong and ultrarapid light flashes that permits to reach very high temperature on the top layer while keeping cold the bottom of the substrate. While this technique has widely been used in silicon,[1] very few reports are present for these emerging materials (mainly on perovskites), [2-4], and fundamental investigation is still missing.