Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menda, Ugur Deneb

  • Google
  • 8
  • 32
  • 62

General Electric (Finland)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineering4citations
  • 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation6citations
  • 2023Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineering4citations
  • 2021Effect of Bathocuproine Concentration on the Photovoltaic Performance of NiOx-Based Perovskite Solar Cells9citations
  • 2021Effect of Bathocuproine Concentration on the Photovoltaic Performance of NiOx-Based Perovskite Solar Cells9citations
  • 2021Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate).10citations
  • 2021Preparation and characterization of porous scaffolds based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)10citations
  • 2021Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)10citations

Places of action

Chart of shared publication
López, Esther
2 / 2 shared
Ribeiro, Guilherme
3 / 3 shared
Deuermeier, Jonas
2 / 38 shared
Artacho, Irene
2 / 2 shared
Ramiro, Iñigo
2 / 4 shared
Mora-Sero, Ivan
1 / 64 shared
Nunes, Daniela
2 / 39 shared
Martins, Rodrigo
3 / 166 shared
Jana, Santanu
2 / 7 shared
Mendes, Manuel Joao
3 / 18 shared
Alexandre, Miguel
1 / 4 shared
Salomé, P.
1 / 2 shared
Águas, Hugo
1 / 41 shared
Ferreira, G.
1 / 1 shared
Barreiros, M. Alexandra
1 / 4 shared
Fernandes, P. A.
1 / 15 shared
Brites, M. J.
1 / 1 shared
Jana, S.
1 / 12 shared
Mora-Seró, Iván
1 / 8 shared
Choi, Fatma Pinar Gokdemir
1 / 2 shared
Alishah, Hamed Moeini
1 / 1 shared
Kahveci, Cihangir
1 / 1 shared
Mendes, Manuel J.
1 / 7 shared
Rodop, Macide Canturk
1 / 1 shared
Gunes, Serap
1 / 3 shared
Pereira, João R.
2 / 4 shared
Freitas, Filomena
2 / 9 shared
Sevrin, Chantal
2 / 13 shared
Oliva, Abel
2 / 2 shared
Grandfils, Christian
2 / 21 shared
Esmail, Asiyah
2 / 5 shared
Fortunato, Elvira
2 / 25 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • López, Esther
  • Ribeiro, Guilherme
  • Deuermeier, Jonas
  • Artacho, Irene
  • Ramiro, Iñigo
  • Mora-Sero, Ivan
  • Nunes, Daniela
  • Martins, Rodrigo
  • Jana, Santanu
  • Mendes, Manuel Joao
  • Alexandre, Miguel
  • Salomé, P.
  • Águas, Hugo
  • Ferreira, G.
  • Barreiros, M. Alexandra
  • Fernandes, P. A.
  • Brites, M. J.
  • Jana, S.
  • Mora-Seró, Iván
  • Choi, Fatma Pinar Gokdemir
  • Alishah, Hamed Moeini
  • Kahveci, Cihangir
  • Mendes, Manuel J.
  • Rodop, Macide Canturk
  • Gunes, Serap
  • Pereira, João R.
  • Freitas, Filomena
  • Sevrin, Chantal
  • Oliva, Abel
  • Grandfils, Christian
  • Esmail, Asiyah
  • Fortunato, Elvira
OrganizationsLocationPeople

article

Effect of Bathocuproine Concentration on the Photovoltaic Performance of NiOx-Based Perovskite Solar Cells

  • Menda, Ugur Deneb
Abstract

<jats:p>Abstract. Bathocuproine (BCP) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is a well-known material that is employed as a hole-blocking layer between electron transport layer (ETL) and metal electrode in perovskite solar cells. It has been demonstrated that the use of BCP as a buffer layer between the ETL and the metal electrode in perovskite solar cells is highly beneficial. In literature, BCP is coated using vacuum processing techniques. Vacuum processing techniques require more energy and cost-effective processing conditions. In this work, we used BCP layers processed through wet processing techniques using sol-gel method with different concentrations. We achieved a short circuit current density (Jsc) of 16.1 mA/cm2 and an open circuit voltage (Voc) of 875 mV were acquired and a fill factor (FF) of 0.37 was calculated for perovskite solar cells without a BCP layer leading to a power conversion efficiency (PCE) of 5.32 % whereas Jsc of 19 mA/cm2, Voc of 990 mV were achieved and a FF of 0.5 was calculated for perovskite solar cells employing BCP layers with concentration of 0.5 mg/ml and spin cast at 4000 rpm, leading to a PCE of 9.4 %. It has been observed that the use of a BCP layer with an optimized concentration led to an improved device performance with an increase of 77 % in PCE in ambient air under high humidity conditions for planar structure perovskite solar cells in the configuration of ITO/NiOx/MAPbI3/PCBM/BCP/Ag. &#x0D; Resumen. Batocuproina (BCP) (2,9-dimetil-4,7-difenil-1,10-fenantrolina) es un material que se emplea como capa de bloqueo de huecos entre la capa transportadora de electrones (ETL) y el electrodo metálico en celdas solares basados en perovskitas. Se ha demostrado que el uso de BCP como capa amortiguadora entre el ETL y el electrodo metálico en las celdas solares de perovskita es beneficioso. Comúnmente el BCP se recubre mediante técnicas de procesamiento al vacío, las cuales requieren altos costos energéticos. En este trabajo utilizamos capas de BCP procesadas mediante técnicas de procesamiento húmedo utilizando el método sol-gel. Logramos una densidad de corriente de cortocircuito (Jsc) de 16.1 mA / cm2 y un voltaje de circuito abierto (Voc) de 875 mV y se calculó un factor de llenado (FF) de 0.37 para las celdas solares de perovskita sin una capa de BCP lo que conduce a una eficiencia de conversión de energía (PCE) de 5.32%. Para celdas solares de perovskita que emplean capas de BCP con concentración de 0.5 mg/ml y centrifugado a 4000 rpm el valor de Jsc fue de 19 mA / cm2, se lograron Voc de 990 mV y se calculó un FF de 0.5, lo que lleva a un PCE del 9,4%. Se observó que el uso de una capa de BCP con concentración optimizada puede conducir a un rendimiento mejorado del dispositivo con un aumento del 77% en PCE en el aire ambiente, en condiciones de alta humedad, para celdas solares de perovskita de estructura plana en la configuración de ITO / NiOx / MAPbI3 / PCBM / BCP / Ag.</jats:p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • current density
  • power conversion efficiency
  • laser absorption spectroscopy