People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gontard, Nathalie, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2020Using life cycle assessment to quantify the environmental benefit of upcycling vine shoots as fillers in biocomposite packaging materialscitations
- 2020Physical–chemical and structural stability of PHBV/wheat straw fibers based biocomposites under food contact conditionscitations
- 2020Food-Grade PE Recycling: Effect of Nanoclays on the Decontamination Efficacycitations
- 2020Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomacescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2020Evaluation of the Food Contact Suitability of Aged Bio-Nanocomposite Materials Dedicated to Food Packaging Applicationscitations
- 2019Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterificationcitations
- 2019The mixed impact of nanoclays on the apparent diffusion coefficient of additives in biodegradable polymers in contact with foodcitations
- 2019Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particlescitations
- 2018Safety assessment of the process ‘Gneuss 2’, based on Gneuss technology, used to recycle post‐consumer PET into food contact materials
- 2018Safety assessment of the process ‘Gneuss 1’, based on Gneuss technology, used to recycle post‐consumer PET into food contact materials
- 2018Dry fractionation of olive pomace for the development of food packaging biocompositescitations
- 2018How the shape of fillers affects the barrier properties of polymer/ non-porous particles nanocomposites: A reviewcitations
- 2018Dry fractionation of olive pomace as a sustainable process to produce fillers for biocompositescitations
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2017Poly(3-hydroxybutyrate-co-hydroxyvalerate) and wheat straw fibers biocomposites produced by co-grinding: Processing and mechanical behaviorcitations
- 2017Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocompositescitations
- 2017Wheat gluten, a bio-polymer to monitor carbon dioxide in food packaging: Electric and dielectric characterizationcitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2016Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocompositecitations
- 2016A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensorscitations
- 2016Plant polymer as sensing material: Exploring environmental sensitivity of dielectric properties using interdigital capacitors at ultra high frequencycitations
- 2016Wheat gluten, a bio-polymer layer to monitor relative humidity in food packaging: Electric and dielectric characterizationcitations
- 2016Water vapor sorption and diffusion in wheat straw particles and their impact on the mass transfer properties of biocompositescitations
- 2015On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymercitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Scientific Opinion on Flavouring Group Evaluation 12, Revision 4 (FGE.12Rev4): primary saturated or unsaturated alicyclic alcohols, aldehydes, acids and esters from chemical groups 1 and 7citations
- 2011Wheat gluten (WG)-based materials for food packagingcitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Effect of Novel Food Processing Methods on Packaging: Structure, Composition, and Migration Propertiescitations
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
- 2010Wheat gluten nanocomposite films as food contact materials: migration tests and impact of a novel food stabilization technology (high pressure)citations
- 2005Ethylene permeability of wheat gluten film as a function of temperature and relative humiditycitations
- 2005Ethylene permeability of wheat gluten film as a function of temperature and relative humiditycitations
- 2004Effect of Temperature on Moisture Barrier Efficiency of Monoglyceride Edible Films in Cereal-Based Composite Foodscitations
Places of action
Organizations | Location | People |
---|
article
Safety assessment of the process ‘Gneuss 1’, based on Gneuss technology, used to recycle post‐consumer PET into food contact materials
Abstract
This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the recycling process Gneuss 1 (EU register No RECYC0143). The input is washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, containing no more than 5% of PET from non-food applications. They are extruded under vacuum into pellets or sheets. Having examined the challenge test provided, the Panel concluded that the decontamination in the extruder under vacuum degassing is the critical step for the decontamination efficiency of the process. The operating parameters to control its performance are well defined and are temperature, pressure, residence time, throughput rate, rotor speed and satellite screws speed. The operating parameters of this step are at least as severe as those obtained from the challenge test. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below a conservatively modelled migration of 0.1 mu g/kg food. Therefore, the recycled PET obtained from the process Gneuss 1 intended for the manufacture of articles made with up to 100% recycled post-consumer PET and intended for contact for long-term storage at room temperature with all types of foodstuffs is not considered of safety concern. Trays made of this recycled PET are not intended to be used, and should not be used, in microwave and conventional ovens.