Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nguyen, Xuan-Hien

  • Google
  • 1
  • 2
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Assessing the Effect of GGBFS Content on Mechanical and Durability Properties of High-Strength Mortars8citations

Places of action

Chart of shared publication
Ngo, Si-Huy
1 / 5 shared
Nguyen, Ngoc Tan
1 / 10 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ngo, Si-Huy
  • Nguyen, Ngoc Tan
OrganizationsLocationPeople

article

Assessing the Effect of GGBFS Content on Mechanical and Durability Properties of High-Strength Mortars

  • Nguyen, Xuan-Hien
  • Ngo, Si-Huy
  • Nguyen, Ngoc Tan
Abstract

<jats:p>As a large amount of steel is produced for the industrialization and modernization of Vietnam, a correspondingly large quantity of steel slag is also released annually. Besides, the demand for mortar is increasing due to urbanization, especially for the high-strength and durability mortar used for important constructions and structures in aggressive environmental areas. This study aims to carry out further research into high-strength mortars incorporating ground granulated blast furnace slag (GGBFS). The control mixture was designed with a water-to-binder ratio of 0.2, and the amount of silica fume used was equal to 25% of the total binder amount by mass. Four other mixtures were designed using GGBFS to substitute for 15, 30, 45, and 60% of cement by mass. The engineering properties of fresh and hardened mortars were comprehensively investigated, especially the durability properties. The microstructure of these mortars was also examined using scanning electron microscopy. Test results show that replacing 15 or 30% of cement with GGBFS yields an improvement in mortar's strength and durability properties. All the mortars in this study show excellent qualities with high strength, low water absorption, and high resistance to chloride attack. Moreover, the presence of GGBFS reduces the shrinkage of mortar caused by the drying process. Doi: 10.28991/CEJ-2022-08-05-07 Full Text: PDF</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • strength
  • steel
  • cement
  • durability
  • drying