Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chiachio-Ruano, Juan

  • Google
  • 3
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016An energy-based prognostic framework to predict evolution of damage in composite materials5citations
  • 2014Reliability-based design optimization of a CFRP bridgecitations
  • 2011An inverse-problem based stochastic approach to model the cumulative damage evolution of composites1citations

Places of action

Chart of shared publication
Saxena, A.
1 / 8 shared
Goebel, K.
1 / 1 shared
Ruano, M. Chiachio
1 / 1 shared
Rodriguez-Sanchez, Julio
1 / 1 shared
Rus, Guillermo
1 / 4 shared
Chiachio, Manuel
1 / 1 shared
Rus, G.
1 / 2 shared
Chiachio, M.
1 / 1 shared
Chart of publication period
2016
2014
2011

Co-Authors (by relevance)

  • Saxena, A.
  • Goebel, K.
  • Ruano, M. Chiachio
  • Rodriguez-Sanchez, Julio
  • Rus, Guillermo
  • Chiachio, Manuel
  • Rus, G.
  • Chiachio, M.
OrganizationsLocationPeople

document

Reliability-based design optimization of a CFRP bridge

  • Rodriguez-Sanchez, Julio
  • Rus, Guillermo
  • Chiachio, Manuel
  • Chiachio-Ruano, Juan
Abstract

<p>In this paper, a new all-composite fiber reinforced polymer (FRP) bridge typology is introduced. The structural system is composed by 4 families of 5 carbon fiber reinforced polymer (CFRP) symmetrically disposed straps, connected to 4 corner-supports and combined with a central CFRP strap. A glass fiber-reinforced polymer (GFRP) deck rests on top of several GFRP variable-section beams, which transfer the loads from the deck to the main net of CFRP laminates. Every structural component of the bridge is bonded by an adhesive resin to the others in contact with it. The bridge is simply-supported at the four CFRP strap family supports and at the extreme GFRP beams that support the deck plate. This way, the span of the bridge is equal to its total length The new-concept of bridge was studied by a finite element (FE) model of the structure. This FE model was further used to adjust a surrogate model of the bridge that was subsequently used for the optimization algorithm. A damage evolution model was implemented in the optimization algorithm to consider the stiffness reduction due to fatigue damage during the lifetime. Finally, the optimum bridge was analysed, checking that it fulfils the structural requirements stated in the design code EC3-2. The results of this work is not only a new optimized bridge concept, but also a scientific design approach that allows us to conceive rational structural designs made with new materials.</p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass
  • fatigue
  • composite
  • resin