People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rafiq, Muhammad Imran
University of Brighton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Impact of climate change on the carbonation in concrete due to Carbon Dioxide ingresscitations
- 2020Combined impact of carbonation and crack width on the Chloride Penetration and Corrosion Resistance of Concrete Structurescitations
- 2019Effect of cracks on alkalinity level of concrete structures exposed to carbon dioxide environment condition
- 2019Influence of Carbonation on the Resistance of Concrete Structures to Chloride Penetration and Corrosioncitations
- 2018Influence of cracks on the carbonation resistance of concrete structures
- 2017The effect of rice husk ash properties on the strength and durability of concrete at high replacement ratio
- 2017Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concretecitations
- 2013Stochastic modeling of chloride-induced pitting corrosion of reinforcement bars in concrete
- 2013Spatial characterisation of chloride-induced corrosion of bars in concrete
- 2013Stochastic modelling of chloride-induced pitting corrosion of reinforcement bars in concrete.
- 2012Physical characterization of reinforcing bar corrosion in concrete
Places of action
Organizations | Location | People |
---|
document
Spatial characterisation of chloride-induced corrosion of bars in concrete
Abstract
Chloride induced corrosion, caused primarily by de-icing salts or salt spray in marine environments, is one of the most common deterioration processes in reinforced concrete. It often causes a localized loss of section, known as pitting, which can lead to a significant reduction of the structure's service life. In order to predict the impact of this phenomenon on the mechanical properties of the reinforcing bars in concrete a thorough analysis of its characteristics is needed. At present, most of the models found in literature describe uniform corrosion and those that do address localized corrosion focus on a simplified definition of the reduced cross-sectional area of corroded rebars without due attention to physical characteristics and spatial variability. This may be attributed to the limitations of current non-automated and largely heuristic methods used in evaluating the corrosion characteristics on the surface of reinforcement. Automation of the corrosion measurement method would lead to the development of comprehensive corrosion models considering both systematic and random features of the deterioration process. In this paper, experimental results from corroded bars are processed using 3D scanning techniques and characterised using spatial analysis tools, thus preparing the ground for probabilistic corrosion modelling based on random field concepts.