People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hoang, Linh Cao
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Determining Concrete Tensile Strength in ASR-Damaged Slabs and Shells Without Transverse Reinforcement
- 2024Full-scale tests of two-storey precast reinforced concrete shear walls:Investigation of strength and deformation capacitycitations
- 2024Full-scale tests of two-storey precast reinforced concrete shear wallscitations
- 2023Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beamscitations
- 2023Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beamscitations
- 2022Experimental investigation of the influence of stirrup spacing on the shear capacity of reinforced concrete beams
- 2022Experimental investigation of the influence of stirrup spacing on the shear capacity of reinforced concrete beams
- 2022Compression Strength of Reinforced Concrete Cubes Pre-Cracked by Uniaxial and Biaxial Tension
- 2021Experimental Investigation of the Shear Capacity of RC Beams with Very Small Amounts of Shear Reinforcement
- 2021Experimental Investigation of the Shear Capacity of RC Beams with Very Small Amounts of Shear Reinforcement
- 2021Anisotropic Compressive Behaviour of Concrete from Slabs Damaged by Alkali-Silica Reactioncitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part I: Experimental investigationcitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part Icitations
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Anisotropic Compressive Behaviour of Concrete from Slabs Damaged by Alkali-Silica Reactioncitations
- 2017Strength of precast concrete shear joints reinforced with high-strength wire ropescitations
- 2017Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes
- 2016Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes
- 2014Alkali-Silica Reaction in Reinforced Concrete Structures, Part II
- 2014Strength Prediction and Failure Modes of Concrete Specimens Subjected to the Split Testcitations
- 2013Tests and limit analysis of loop connections between precast concrete elements loaded in tensioncitations
- 2013Tests and limit analysis of loop connections between precast concrete elements loaded in tensioncitations
- 2011N-V Interaction in Reinforced Concrete Elements without Stirrupscitations
- 2011Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beamscitations
- 2010Application of plastic theory to shear strength prediction of external prestressed concrete beams
- 2010Shear Strength of Reinforced Concrete Piers and Piles with Hollow Circular Cross Sectioncitations
- 2010Shear strength of heavily reinforced concrete members with circular cross sectioncitations
- 2009Shear Test on RC Elements with Circular Cross Sectioncitations
- 2009Shear strength prediction of circular RC members by the crack sliding modelcitations
- 2008Upper bound calculations of shear resistance in arbitrary curved diagonal cracks
Places of action
Organizations | Location | People |
---|
document
Shear Test on RC Elements with Circular Cross Section
Abstract
Reinforced concrete members with circular cross section are widely used in bridge engineering, either as piers or as piles to support pile caps. In codes, guidelines for shear design of circular concrete members are almost none-existing. Some codes specify rules based on shear models for rectangular members. The shear behaviour of members with circular cross section is, however, quite different from that of rectangular members. The published experimental research on the shear behaviour of circular members contains only test results with very low shear reinforcement percentages. In this paper shear tests on a series of heavily confined concrete members are reported. The specimens have shear reinforcement percentages (hoops) up to more than three times the maximum percentage found in existing tests. The test results are compared with a recently developed shear design model for circular members Good agreement has been found.