Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jensen, Uffe G.

  • Google
  • 2
  • 3
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Shear Strength of Reinforced Concrete Piers and Piles with Hollow Circular Cross Section10citations
  • 2010Shear strength of heavily reinforced concrete members with circular cross section29citations

Places of action

Chart of shared publication
Hoang, Linh Cao
2 / 31 shared
Fabrin, Lars S.
1 / 1 shared
Joergensen, Henrik B.
1 / 2 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Hoang, Linh Cao
  • Fabrin, Lars S.
  • Joergensen, Henrik B.
OrganizationsLocationPeople

article

Shear Strength of Reinforced Concrete Piers and Piles with Hollow Circular Cross Section

  • Jensen, Uffe G.
  • Hoang, Linh Cao
Abstract

Substructures in bridge engineering may be comprised of reinforced concrete piers and piles with hollow, circular cross section. Such members normally have a larger flexural strength to weight ratio than similar solid members. They are, however, more shear critical owing to the hollow core. Guidelines and code rules for shear strength evaluation of such members are almost non-existent. This paper deals with the problem using a plasticity approach. It is assumed that the shear strength of the member will, depending on the compressive normal force, be governed either by shear failure in cracked concrete or by shear failure in uncracked concrete. This distinction makes it possible to calculate the enhancement effect of axial compression on the shear capacity. To distinguish between the two types of failure, it is proposed to combine a classical upper bound model with the so-called crack sliding model. Results obtained from the model are compared with test results found in the literature. Good agreement has been found.

Topics
  • impedance spectroscopy
  • crack
  • strength
  • flexural strength
  • plasticity