Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cherni, S.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Crystal structure of a [(dihydrogen pyrophosphato-K2O,O') bis(1,10-phenanthroline-N,N')nickel(II)]2.5-hydrate [Ni(H2P2O7)(C12H8N2)2] · 2.5H2Ocitations

Places of action

Chart of shared publication
Zid, F.
1 / 1 shared
Driss, A.
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Zid, F.
  • Driss, A.
OrganizationsLocationPeople

article

Crystal structure of a [(dihydrogen pyrophosphato-K2O,O') bis(1,10-phenanthroline-N,N')nickel(II)]2.5-hydrate [Ni(H2P2O7)(C12H8N2)2] · 2.5H2O

  • Zid, F.
  • Driss, A.
  • Cherni, S.
Abstract

<jats:p>Coordination nickel pyrophosphate [Ni(H2P2O7)(C12H8N2)2]×2.5H2O (I) is hydrothermally synthesized and characterized by single crystal X-ray diffraction. The title compound crystallizes in the triclinic system, space group P-1, with cell parameters M = 640.07, a = 10.285(2) Å, b = 10.510(3) Å, c = 12.775(3) Å, α = 88.06(2)°, β = 77.87(2)°, γ = 89.26(2)°, V = 1349.2(5) Å3, Z = 2, R1[I &gt; 2σ(I)] = 0.0438, wR2[I &gt; 2σ(I)] = 0.1244. This compound displays a new structure of ladder-like 2D layers parallel to (010) consisting of [Ni(H2P2O7)(phen)2] entities with the distorted octahedral NiN4O2 coordination geometry arising from two chelating 1,10-phe­nanthroline ligands and diphosphate [H2P2O7] ligand bridged through π⋯π stacking interactions between the neighboring 1,10-phen ligands with interplanar distances of 4.425 Å and 4.525 Å. In the compound, the phen ligands bind in a bidentate fashion to the metal atoms and the ladder-like structure of the compound extends into a three-dimensional supramolecular array via hydrogen bonds (O4—H17…O5) between diphosphate groups, which delimits b axis tunnels where water molecules are located.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • single crystal X-ray diffraction
  • single crystal
  • nickel
  • Hydrogen
  • space group