Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kim, Taek-Seung

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Metal doping of halide perovskite nanocrystals under ambient conditionscitations

Places of action

Chart of shared publication
Reponen, Antti-Pekka M.
1 / 2 shared
Casaday, Claire E.
1 / 1 shared
Feldmann, Sascha
1 / 19 shared
Cui, Dongtao
1 / 1 shared
Reece, Christian
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Reponen, Antti-Pekka M.
  • Casaday, Claire E.
  • Feldmann, Sascha
  • Cui, Dongtao
  • Reece, Christian
OrganizationsLocationPeople

document

Metal doping of halide perovskite nanocrystals under ambient conditions

  • Reponen, Antti-Pekka M.
  • Casaday, Claire E.
  • Feldmann, Sascha
  • Cui, Dongtao
  • Reece, Christian
  • Kim, Taek-Seung
Abstract

<jats:p>Halide perovskite nanocrystals are promising materials for optoelectronic applications. Metal doping provides an avenue to boost their performance further, e.g., by enhancing light emission, or to provide additional functionalities, such as nano-scale magnetism and polarisation control. However, the synthesis of widely size-tuneable nanocrystals with controlled doping levels has been inaccessible using traditional hot injection synthesis, preventing systematic studies on dopant effects device application. Here, we report a versatile synthesis method for metal-doped perovskite nanocrystals with precise control over size and doping concentration under ambient conditions. Our room temperature approach results in fully size-tuneable isovalent doping of CsPbX3 nanocrystals (X = Br, Cl) with various transition metals M2+ tested (M = Mn, Ni, Zn). This gives for the first time access to small, yet precisely doped quantum dots beyond the weak confinement regime reported so far. It also enables a comparative study of the photophysics across multiple size and dopant regimes, where we show dopant-induced localisation to dominate over quantum confinement effects. This generalisable, facile synthesis method thus provides a toolbox for engineering perovskite nanocrystals toward light-emitting technologies under industrially relevant conditions.</jats:p>

Topics
  • perovskite
  • quantum dot