Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rueda-Navarro, Celia

  • Google
  • 1
  • 14
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024A Novel Ti12-based Metal-Organic Framework for Photocatalytic Hydrogen Evolutioncitations

Places of action

Chart of shared publication
Mansouri, Asma
1 / 3 shared
Fernando, Lokuge Aravindani
1 / 1 shared
Serre, Christian
1 / 26 shared
Navalon, Sergio
1 / 2 shared
Fan, Dong
1 / 1 shared
Boullay, Philippe
1 / 14 shared
Mouchaham, Georges
1 / 10 shared
Chen, Bingbing
1 / 1 shared
Maurin, Guillaume
1 / 19 shared
Xiao, Beibei
1 / 1 shared
Melillo, Arianna
1 / 1 shared
Garcia, Hermenegildo
1 / 6 shared
Patriarche, Gilles
1 / 62 shared
Dovgaliuk, Iurii
1 / 11 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Mansouri, Asma
  • Fernando, Lokuge Aravindani
  • Serre, Christian
  • Navalon, Sergio
  • Fan, Dong
  • Boullay, Philippe
  • Mouchaham, Georges
  • Chen, Bingbing
  • Maurin, Guillaume
  • Xiao, Beibei
  • Melillo, Arianna
  • Garcia, Hermenegildo
  • Patriarche, Gilles
  • Dovgaliuk, Iurii
OrganizationsLocationPeople

report

A Novel Ti12-based Metal-Organic Framework for Photocatalytic Hydrogen Evolution

  • Rueda-Navarro, Celia
  • Mansouri, Asma
  • Fernando, Lokuge Aravindani
  • Serre, Christian
  • Navalon, Sergio
  • Fan, Dong
  • Boullay, Philippe
  • Mouchaham, Georges
  • Chen, Bingbing
  • Maurin, Guillaume
  • Xiao, Beibei
  • Melillo, Arianna
  • Garcia, Hermenegildo
  • Patriarche, Gilles
  • Dovgaliuk, Iurii
Abstract

Constructing titanium-based metal-organic frameworks (Ti-MOFs) is an effective way towards upgrading TiOx and the enhancement of their photocatalytic performance throughout higher accessibility to active sites and better tunability of photophysical properties. In this regard, Ti-MOFs have attracted much attention as photocatalyst candidates owing to their porosity and tunability in terms of chemical composition and pore engineering. However, Ti-MOFs remain still one of the least developed sub-class of MOF materials because of the complexity of titanium chemistry in solution hampering their rational design, despite recent progresses. Here, we present a new microporous Ti-MOFs with acs topology, labeled MIP-209(Ti) (MIP stands for Materials from Institute of Porous Materials of Paris) constructed by a nitro terephthalate ligand and Ti12O15 oxo-clusters, as revealed by continuous rotation electron diffraction (cRED). MIP-209(Ti) can be obtained using various terephthalate (1,4-BDC2-) derivatives such as NO2-BDC and 2Cl-BDC using an eco-friendly solvent, suggesting the ability of Ti12-MOFs for isostructural chemistry. Alternatively, it is also possible to tune the composition of its Ti-oxo-cluster, similarly to MIP-177(Ti)-LT bearing the same Ti12O15 sub-unit. Typically, low percentage Cr3+ doping (≤ 5 at%) in MIP-209(Ti) favorably enhances the water stability. Interestingly, photocatalytic hydrogen evolution from water splitting reaction (HER) were measured for MIP-209(Ti-Cr)-NO2 and a significant hydrogen production rate, with good reusability and stability under simulated solar light irradiation, were revealed. It showed enhanced photocatalytic hydrogen production performances under simulated solar light irradiation compared to the benchmark Ti-MOF IEF-11 with a fourfold enhanced hydrogen production in HER in 5h in presence of methanol (5812 µmol of H2/gcat against 1391 µmol of H2/gcat) as well as, without any noble metal co-catalyst, a 6-fold enhanced overall water splitting production (681 and 325 µmol/gcat of ...

Topics
  • porous
  • impedance spectroscopy
  • pore
  • cluster
  • electron diffraction
  • Hydrogen
  • chemical composition
  • titanium
  • porosity