People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stanescu, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Scanning transmission X-ray spectromicroscopy: a nanotool to probe hematite nanorods for solar water splittingcitations
- 2019Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course studycitations
- 2019Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course studycitations
- 2018Fast X-ray reflectivity measurements using an X-ray pixel area detector at the DiffAbs beamline, Synchrotron SOLEILcitations
- 2017Finite size effect on the structural and magnetic properties of MnAs/GaAs(001) patterned microstructures thin filmscitations
- 2009Low Temperature Surface Diffusion on Metallic Surfacescitations
Places of action
Organizations | Location | People |
---|
document
Scanning transmission X-ray spectromicroscopy: a nanotool to probe hematite nanorods for solar water splitting
Abstract
International audience ; We report a scanning transmission X-ray microscopy (STXM) study of hematite nanorods, prototypical photoanode used in solar water splitting. Hematite nanorods were obtained by hydrothermal growth from aqueous solutions using FeCl3 as precursor. Potentials for onset of water splitting are smaller using this synthesis method, compared to values reported for hematite photoanodes obtained by epitaxial growth. STXM revealed the presence of a hexahydrate iron chloride phase at the surface of the nanorods, which is linked to the low onset potential values. We detail the quantification approach that revealed the specific microstructure of individual hematite nanorods.