People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sajzew, Roman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Observation of a Reversible Order‐Order Transition in a Metal‐Organic Framework – Ionic Liquid Nanocomposite Phase‐Change Materialcitations
- 2024Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses
- 2024Gas‐Separating Metal‐Organic Framework Membrane Films on Large‐Area 3D‐Printed Tubular Ceramic Scaffoldscitations
- 2023Surface Hardness and Abrasion Threshold of Chemically Strengthened Soda-Lime Silicate Glasses After Steam Processing
- 2023Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glasscitations
- 2023Precise control over gas-transporting channels in zeolitic imidazolate framework glassescitations
- 2023Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses.
- 2023Gas Separating Metal-Organic Framework Membrane Films on Large Area 3D-Printed Tubular Ceramic Scaffolds
- 2023Fabrication and characterization of SiO2 glass containing YbPO4 crystalscitations
- 2023Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass.
- 2023Structural insights into hybrid immiscible blends of metal–organic framework and sodium ultraphosphate glassescitations
- 2023Controlled formation of gold nanoparticles with tunable plasmonic properties in tellurite glasscitations
- 2023Research data supporting 'Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses'
- 2022Mechanoluminescence from highly transparent ZGO:Cr spinel glass ceramicscitations
- 2022Advancing the mechanical performance of glasses: Perspectives and challengescitations
- 2021Thermal strengthening of low‐expansion glasses and thin‐walled glass products by ultra‐fast heat extractioncitations
Places of action
Organizations | Location | People |
---|
document
Gas Separating Metal-Organic Framework Membrane Films on Large Area 3D-Printed Tubular Ceramic Scaffolds
Abstract
<jats:p>Polycrystalline metal-organic framework (MOF) membrane films prepared on ceramic supports can separate gases with high energy efficiency. They generally exhibit very high permeance and selectivity but suffer from cost issues through the required ceramic supports. Increasing the area and reducing the ceramic component to a minimum could be a strategy to enabling neat membrane of MOFs. In a rapid prototyping approach using 3D-printed porous scaffolds with a double helical channel geometry, we dramatically increase the active membrane area-to-volume ratio. Following stereolithographic printing and de-binding of a ceramic slurry, an adapted sintering protocol was employed to sinter commercially available alumina slurries into porous scaffolds. The 3D-printed scaffolds were optimized at a porosity of 40%, with satisfying mechanical stability. Furthermore, synthetic procedures yielding omnidirectional, homogeneous coatings on the outside and inside of the tubular scaffolds were developed. Membrane films of ZIF-8 and HKUST-1 covering a huge 50 cm² membrane area were produced in this way by applying a counter-diffusion methodology. Gas separation performance was evaluated for H2, CO2, N2 and CH4, in single-gas measurements and on their binary gas mixtures.</jats:p>