Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schonrath, Hanna

  • Google
  • 1
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Analytical Modeling of Cooling Rates in PBF-LB/M of Bulk Metallic Glassescitations

Places of action

Chart of shared publication
Kleszczynski, Stefan
1 / 12 shared
Ellendt, Nils
1 / 4 shared
Frey, Maximilian
1 / 25 shared
Erdmann, Benjamin H. R.
1 / 1 shared
Neises, Julian
1 / 1 shared
Wegner, Jan
1 / 11 shared
Barreto, Erika Soares
1 / 2 shared
Schnell, Norman
1 / 3 shared
Busch, Ralf
1 / 44 shared
Elspab, Arno
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kleszczynski, Stefan
  • Ellendt, Nils
  • Frey, Maximilian
  • Erdmann, Benjamin H. R.
  • Neises, Julian
  • Wegner, Jan
  • Barreto, Erika Soares
  • Schnell, Norman
  • Busch, Ralf
  • Elspab, Arno
OrganizationsLocationPeople

document

Analytical Modeling of Cooling Rates in PBF-LB/M of Bulk Metallic Glasses

  • Kleszczynski, Stefan
  • Ellendt, Nils
  • Frey, Maximilian
  • Erdmann, Benjamin H. R.
  • Neises, Julian
  • Wegner, Jan
  • Barreto, Erika Soares
  • Schnell, Norman
  • Busch, Ralf
  • Elspab, Arno
  • Schonrath, Hanna
Abstract

Additive manufacturing through laser powder bed fusion (PBF-LB/M) inheres great potential for the processing of bulk metallic glasses (BMGs). The size-independent high cooling rates during the process benefit the fabrication of large and elaborate amorphous components. Albeit, partial crystallization poses a challenge in additively manufactured BMGs, potentially limiting the resulting mechanical properties. In this matter, the complex thermal history during processing often states a remaining uncertainty. Besides in situ measurements and numerical estimations, analytical models can be used to achieve a deeper understanding of the transient temperature evolution. In this work, an iterative solution to the analytical Rosenthal equation is developed and applied to ZrCuAlNb- and CuTiZrNi-BMGs to predict melt pool dimensions and cooling rates during PBF-LB/M. Therefore, temperature-dependent thermal properties are determined via laser flash measurements. The effective absorptivity of the two materials is measured, and single-line experiments were performed as a validation for the approach.

Topics
  • impedance spectroscopy
  • amorphous
  • experiment
  • melt
  • glass
  • glass
  • selective laser melting
  • crystallization