Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cardoletti, Juliette

  • Google
  • 3
  • 10
  • 5

Luxembourg Institute of Science and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024{001}-textured Pb(Zr, Ti)O₃ thin films on stainless steel by pulsed laser depositioncitations
  • 2022Evidence for antipolar displacements in NaNbO3 thin films5citations
  • 2021Deposition and modelling of lead zirconate titanate thin films on stainless steel for MEMS applicationscitations

Places of action

Chart of shared publication
Alff, Lambert
2 / 11 shared
Komissinskiy, Philipp
2 / 9 shared
Morandi, Carl
1 / 1 shared
Bruder, Enrico
1 / 13 shared
Major, Marton
1 / 4 shared
Schneider, Thorsten
1 / 4 shared
Ding, Hui
1 / 6 shared
Jiang, Tianshu
1 / 5 shared
Molina-Luna, Leopoldo
1 / 30 shared
Zhang, Mao-Hua
1 / 4 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Alff, Lambert
  • Komissinskiy, Philipp
  • Morandi, Carl
  • Bruder, Enrico
  • Major, Marton
  • Schneider, Thorsten
  • Ding, Hui
  • Jiang, Tianshu
  • Molina-Luna, Leopoldo
  • Zhang, Mao-Hua
OrganizationsLocationPeople

thesis

Deposition and modelling of lead zirconate titanate thin films on stainless steel for MEMS applications

  • Cardoletti, Juliette
Abstract

Technological development is permanently advancing in the direction of miniaturisation and energy consumption reduction. One of the keys to this pathway lies in the integration of ferroelectric thin films into Micro-Electro-Mechanical Systems (MEMS) applications. For this purpose, due to its large piezoelectric response, lead zirconate titanate is the material of choice in industry. To broaden the range of applications, substrates less brittle than the currently favoured silicon must be implemented into MEMS. In this work, lead zirconate titanate thin films on stainless steel substrates were both experimentally investigated and modelled. Lead zirconate titanate thin films of composition PbZr0.52Ti0.48O3 were grown on AISI 304 stainless steel substrates by pulsed laser deposition with {001} texture to improve their piezoelectric response. As demonstrated using X-ray and electron backscatter diffraction, the texture engineering is achieved through a selection of two buffer layers, Al2O3 and LaNiO3. The former buffer prevents the oxidation of the stainless steel substrate during deposition of the subsequent layers. The latter serves as both a bottom electrode and a growth template to promote the {001} texture of PbZr0.52Ti0.48O3 thin films. The lead zirconate titanate thin films ferroelectric properties are improved through 2 mol.% Nb-doping, resulting in dielectric constants and losses at 1 kHz for a 200 nm thick film of 350 and below 5 %, respectively, before measurement of polarisation versus electrical field hysteresis. Following these measurements, the Nb-doped lead zirconate titanate thin films permittivity increases up to 430. With a thickness of 400 nm, the films exhibit a remanent polarisation of 16.5 μC·cm−2 and a coercive field of 92 kV·cm−1. In the modelling, based on a ferroelectric switching criterion and the Euler-Bernoulli beam theory, it was investigated how the vertical deflection of ferroelectric bending tongues behaves with a load at their free end. The model developed here bridges the gap existing in literature between the modelling of ferroelectric switching and the mechanical description of linear piezoelectric structures. Furthermore, the ferroelectric switching criterion model is improved by the inclusion of strain saturation at high fields, which is inherent to ferroelectrics. The model includes parameters describing the geometry of the bending tongue, its mechanical and material properties, the crystallographic state and built-in strain of the ferroelectric thin film and the applied electrical field to determine the vertical deflection for MEMS applications based on ferroelectric bending tongues. In summary, the technically relevant {001} texture of lead zirconate titanate thin films on stainless steel substrates has been successfully engineered. The thin films, especially with 2 mol.% Nb-doping, are excellent candidates for MEMS applications on non-brittle substrates, in particular in sensor technology. Furthermore, the model established in this work indicates that ferroelectric bending tongues made of lead zirconate titanate on stainless steel substrates can develop sufficient vertical deflection for MEMS applications.

Topics
  • impedance spectroscopy
  • stainless steel
  • inclusion
  • theory
  • thin film
  • dielectric constant
  • laser emission spectroscopy
  • texture
  • Silicon
  • electron backscatter diffraction
  • pulsed laser deposition