People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bönisch, Matthias
KU Leuven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Tailoring microstructure and mechanical properties of an LPBF-processed beta Ti-Nb alloy through post-heat treatmentscitations
- 2023Achieving exceptional wear resistance in a crack-free high-carbon tool steel fabricated by laser powder bed fusion without pre-heatingcitations
- 2023Formation of L1$_0$ Ordering in FeNi by Mechanical Alloying and Field-Assisted Heat Treatment: Synchrotron XRD Studiescitations
- 2023Tension-compression asymmetry of metastable austenitic stainless steel studied by in-situ high-energy X-ray diffractioncitations
- 2021Towards a dislocation-based model for strain path effects in bainitic pipeline steelscitations
- 2020Unravelling Anisotropy Evolution during Spiral Pipe Forming: a Multiscale Approachcitations
- 2016Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys
- 2013Production of porous β-Type Ti–40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressingcitations
- 2013Thermal stability and phase transformations of martensitic Ti-Nb alloyscitations
Places of action
Organizations | Location | People |
---|
article
Towards a dislocation-based model for strain path effects in bainitic pipeline steels
Abstract
<jats:p>Modern pipeline steels exhibit complex microstructures that cause mechanical anisotropy in various respects. For instance, strain path effects under non-monotonic loadings are exceptionally pronounced in these steels. Crystallographic texture and morphological anisotropy are the main contributors to strength and hardening directionality in pipeline steels under monotonic loading. In contrast, the dislocation substructure is seen as the primary source for Bauschinger and cross effects during complex non-monotonic loading, e.g. during pipe forming. The Bauschinger effect for example may arise from pile-ups formed at obstacles such as intragranular shear bands, and homo- or heterophase boundaries. The dislocation-based model by Peeters et al. [Acta Mater., 49 (2001), pp. 1607-1619] developed for coarse-grained ferritic steel allows for complex strain path effects through the accumulation of dislocations at micro-shear bands. However, it struggles to reproduce the large Bauschinger effect of ~250MPa in fine-grained bainitic pipeline steel [Bönisch et al., Procedia Manuf., 47 (2020), pp. 1434-1441]. Considering the microstructural differences between the two steel varieties, a promising way to improve the model predictions - especially for the Bauschinger effect - is to incorporate dislocation interactions with phase and/or grain boundaries. In the present work, we introduce this approach and demonstrate the basic capabilities of such a grain boundary-extended Peeters model. By accounting for the formation of pile-ups at grain boundaries the Bauschinger effect is enlarged. Furthermore, by explicitly considering the grain boundary spacing, the model can deliver grain size (Hall-Petch) strengthening.</jats:p>