Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pondaven, Corentin

  • Google
  • 2
  • 4
  • 7

Laboratoire de Conception Fabrication Commande

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Parameter identification of 42CrMo4 steel hot forging plastic flow behaviour using industrial upsetting presses and finite element simulations6citations
  • 2021Numerical and experimental simulation of shrinkage porosity closure during hot rolling of bars1citations

Places of action

Chart of shared publication
Bigot, Régis
1 / 39 shared
Baudouin, Cyrille
1 / 9 shared
Balan, Tudor
1 / 33 shared
Venet, Gabriel
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Bigot, Régis
  • Baudouin, Cyrille
  • Balan, Tudor
  • Venet, Gabriel
OrganizationsLocationPeople

article

Numerical and experimental simulation of shrinkage porosity closure during hot rolling of bars

  • Pondaven, Corentin
Abstract

<jats:p>Hot rolling of bars issued from continuous-casting aims at refining the material structure and guaranteeing the central soundness of the metallurgical product. The rolling route must be designed to achieve the complete closure of the shrinkage porosity inherent in the continuous casting process. To predict the void evolution, many models exist that can be implemented in the finite element simulation of the process. Nevertheless, these models need parameter adjustments to be adapted to the forming process, the formed material, and the real geometry of the void. Real scale tests being very expensive in the long product rolling mill, an improved representativeness experimental configuration was designed to reproduce at the laboratory scale the key characteristics of the thermomechanical path driving the void closure phenomenon. This testing consists of successive forming stages with shaped anvils applied to samples containing a shrinkage cavity. The shaped anvils and the forming conditions are calibrated to reproduce the levels of strain and the stress triaxiality of rolling stands, and the alternation of the forming direction of the industrial process. The geometry of the voids before and after the forming paths are measured by tomography. The simulation of the test with an explicit modelling of the void is developed parallel to the experiments. The simulation/experiment comparison allows the validation of the numerical model. The obtained model will be used in future works to perform a more extended design of experiments to characterise void closure during hot rolling of bars.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • tomography
  • void
  • porosity
  • hot rolling
  • continuous casting