People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Renggli, Kasper
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2016Protein cages and synthetic polymerscitations
- 2014A chaperonin as protein nanoreactor for atom-transfer radical polymerizationcitations
- 2013Combining polymers with the functionality of proteinscitations
- 2013Combining Polymers with the Functionality of Proteins: New Concepts for Atom Transfer Radical Polymerization, Nanoreactors and Damage Self-reporting Materialscitations
- 2013Hemoglobin and red blood cells catalyze atom transfer radical polymerizationcitations
- 2012ATRPasescitations
- 2011Selective and responsive nanoreactorscitations
- 2011Horseradish peroxidase as a catalyst for atom transfer radical polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
Combining polymers with the functionality of proteins
Abstract
<p>Proteins are macromolecules with a great diversity of functions. By combining these biomolecules with polymers, exciting opportunities for new concepts in polymer sciences arise. This highlight exemplifies the aforementioned with current research results of our group. We review our discovery that the proteins horseradish peroxidase and hemoglobin possess ATRPase activity, i.e. they catalyze atom transfer radical polymerizations. Moreover, a permeabilization method for polymersomes is presented, where the photoreaction of an α-hydroxyalkylphenone with block copolymer vesicles yields enzyme-containing nanoreactors. A further intriguing possibility to obtain functional nanoreactors is to enclose a polymerization catalyst into the thermosome, a protein cage from the family of chaperonins. Last but not least, fluorescent proteins are discussed as mechanoresponsive molecular sensors that report microdamages within fiber-reinforced composite materials.</p>