Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Clark, Douglas S.

  • Google
  • 1
  • 1
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Self-reporting materials7citations

Places of action

Chart of shared publication
Bruns, Nico
1 / 29 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Bruns, Nico
OrganizationsLocationPeople

article

Self-reporting materials

  • Clark, Douglas S.
  • Bruns, Nico
Abstract

<p>Damage self-reporting materials are able to indicate the presence of microscopic damaged regions by easy to detect signals, such as fluorescence. Therefore, these smart materials can reduce the risk of catastrophic failure of load-bearing components, e.g. in aerospace and construction applications. We highlight here our proof-of-concept paper and we present some additional data, which shows that proteins can be used as mechanophores in solid polymeric materials. Macroscopic mechanical forces were transferred from the polymer to the embedded proteins. The biomolecules act as molecular strain sensor, giving the material the desired selfreporting property. Poly(ethylene glycol) and poly(acrylamide) (PAAm) networks were doped with small amounts of thermsosome (THS), a protein cage from the family of chaperonins, that encapsulated a pair of fluorescent proteins. THS acts as a scaffold which brings the two fluorescent proteins into distance suitable for fluorescence resonance energy transfer (FRET). Moreover, THS can be distorted by mechanic forces so that the distance between the fluorescent proteins changes, leading to a change in FRET efficiency. Using the brittle PAAm as a model system, we were able to visualize microcracks in the polymers by FRET microscopy and by fluorescence lifetime imaging. THS also stabilizes the encapsulated guest proteins against thermal denaturation, increasing their half-live at 70 °C by a factor of 2.3.</p>

Topics
  • polymer
  • microscopy