People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pommerenke, David
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023On the Difficulties to Determine the Intrinsic Material Parameters for MnZn Ferritescitations
- 2023The distribution of discharge amplitudes of randomly colliding charged spherescitations
- 2023A Method to Determine the Permittivity of Anisotropic Thin Sheet Absorber Materials
- 2018Characterization of relative complex permittivity and permeability for magneto-dielectric sheetscitations
- 2018Measurement of Dielectric Constant and Cross-Sectional Variations of a Wirecitations
- 2018Common-mode impedance of a ferrite toroid on a cable harness
- 2012Nonlinear capacitors for ESD protectioncitations
- 2011Rapid rotary scanner and portable coherent wideband Q-band transceiver for high-resolution millimeter-wave imaging applicationscitations
- 2002Efficient FDTD simulation of fields in coaxial cables with multi-layered insulation partially formed by dispersive layers of extremely high permittivitycitations
- 2000Broadband measurement of the conductivity and the permittivity of semiconducting materials in high voltage XLPE cables
Places of action
Organizations | Location | People |
---|
article
Common-mode impedance of a ferrite toroid on a cable harness
Abstract
<p>Ferrite toroids (or clamps) are widely used to reduce common-mode (CM) currents in power systems. The CM impedance of the ferrite depends on the frequency-dispersive permeability and permittivity of the ferrite, the geometry of the system, and the location of the ferrite in it. An analytical model was developed to predict the CM impedance of a wire harness above a return plane with a ferrite on it. The model is based on transmission line theory for a cable, a ferrite, and a return plane. The parameters of the model are calculated using a frequency-dependent quasistatic model for a ferrite toroid. This model accurately predicts the CM impedance of a mock harness within 3 dB up to 1 GHz. The proposed model is also applied to a real power system consisting of an inverter and a motor. Knowledge of the CM impedance of the system in the operating regime is critical to determining the impact of the ferrite on CM currents. The CM impedance is determined using the dual current clamp technique. The impact of the ferrite on the CM impedance and currents of the power inverter system was predicted within 3 dB, demonstrating the usefulness of the modelling approach for analysis of power systems.</p>