Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mkhoyan, Tigran

  • Google
  • 2
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Aeroelastic Wing Demonstrator with a Distributed and Decentralized Control Architecture1citations
  • 2021Developing the Model Reduction Framework in High Frame Rate Visual Tracking Environmentcitations

Places of action

Chart of shared publication
Wang, Xuerui
1 / 1 shared
Breuker, Roeland De
2 / 22 shared
Fassah, Abdul Abdul Rozak Rivai
1 / 1 shared
De Visser, Cornelis
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Wang, Xuerui
  • Breuker, Roeland De
  • Fassah, Abdul Abdul Rozak Rivai
  • De Visser, Cornelis
OrganizationsLocationPeople

document

Aeroelastic Wing Demonstrator with a Distributed and Decentralized Control Architecture

  • Wang, Xuerui
  • Breuker, Roeland De
  • Mkhoyan, Tigran
Abstract

This study investigated the design and development of an autonomous aeroservoelastic wing concept with distributed flaps. This wing demonstrator was developed in the scope of the SmartX project, aiming to demonstrate in-flight performance optimization and multi-objective control with over-actuated wing designs. Following a successful test campaign with a previous wing design based on active morphing, this study aims to develop an over-actuated aeroelastic wing design suitable for aeroelastic control, including flutter suppression, maneuver and gust load alleviation. A decentralized control architecture is developed for the over-actuated and over-sensed system, allowing efficient sensing data processing and control algorithms. Aerodynamic and structural analyses are performed to determine actuator torque requirements and actuation mechanism design. Furthermore, buckling analysis is performed to size the wing structure. A state-space aeroelastic dynamic model is established to analyze the gust response and control effectiveness of the wing. It is established that a linear quadratic regulator significantly improves the closed-loop performance. Furthermore, the hypotheses are confirmed that fast actuation improves load alleviation performance and high-frequency disturbance rejection effectiveness. The manufacturing and integration of the wing demonstrator are discussed, which lay a foundation for future static and dynamic wind-tunnel experiments.

Topics
  • impedance spectroscopy
  • experiment