People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Furtado, Carolina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023A design methodology of composite scarf repairs using artificial intelligencecitations
- 2022MODE I CRACK PATH TRANSITIONS IN UNIDIRECTIONAL CARBON FIBRE COMPOSITES ANALYSED USING IN SITU 3D COMPUTED TOMOGRAPHY AND THE EXTENDED FINITE ELEMENT METHOD
- 2022In Situ Synchrotron X-ray Microtomography of Progressive Damage in Canted Notched Cross-Ply Composites with Interlaminar Nanoreinforcementcitations
- 2022Evaluation of digital volume correlation (DVC) applicability in silicon dioxide (SiO2) particle-doped carbon fibre reinforced polymers using in situ synchrotron radiation computed tomography (SRCT)
- 2021Modelling damage in multidirectional laminates subjected to multi-axial loadingcitations
- 2021A methodology to generate design allowables of composite laminates using machine learningcitations
- 2021A methodology to generate design allowables of composite laminates using machine learningcitations
- 2021Modelling damage in multidirectional laminates subjected to multi-axial loading:ply thickness effects and model assessmentcitations
- 2021In situ synchrotron computed tomography study of nanoscale interlaminar reinforcement and thin-ply effects on damage progression in composite laminatescitations
- 2020Is there a ply thickness effect on the mode I intralaminar fracture toughness of composite laminates?citations
- 2020Thin-ply polymer composite materials: a reviewcitations
- 2020Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced compositescitations
- 2019Static and fatigue interlaminar shear reinforcement in aligned carbon nanotube-reinforced hierarchical advanced compositescitations
- 2019Simulation of failure in laminated polymer composites: building-block validationcitations
- 2019Damage micro-mechanisms in notched hierarchical nanoengineered thin-ply composite laminates studied by in situ synchrotron x-ray microtomographycitations
- 2019Virtual calculation of the B-value allowables of notched composite laminatescitations
- 2019A micro-mechanics perspective to the invariant-based approach to stiffnesscitations
- 2018Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminatescitations
- 2017Prediction of size effects in open-hole laminates using only the Young's modulus, the strength, and the R-curve of the 0 degrees plycitations
- 2017Interlaminar reinforcement of carbon fiber composites using aligned carbon nanotubes
- 2017Damage modelling of thin-ply nano-reinforced composite laminates
- 2017Synergetic effects of thin ply and nanostitching studied by synchrotron radiation computed tomography
- 2016Selective ply-level hybridisation for improved notched response of composite laminatescitations
- 2016Selective ply-level hybridisation for improved notched response
Places of action
Organizations | Location | People |
---|
document
In Situ Synchrotron X-ray Microtomography of Progressive Damage in Canted Notched Cross-Ply Composites with Interlaminar Nanoreinforcement
Abstract
In this study, the effects on 3D strengthening and toughening mechanisms of interlaminar nanoreinforcement (termed ‘nanostitch’ here, achieved by embedding highly dense forests of vertically aligned carbon nanotubes in polymer-rich ply/ply interfaces) are studied qualitatively and quantitatively via 4D progressive damage in carbon (micro) fiber reinforced plastic/polymer (CFRP) composite laminates by implementing in situ synchrotron radiation computed tomography (SRCT) of delamination-prone cross-ply double edge-notched tension (DENT) configurations (scaled-down specimen geometry) via semi-automatic (human-driven) damage segmentation. A 20°-canted loading rig fixture was also designed, fabricated, and employed here to enable clear imaging of features that are typically blurred due to their alignment with the X-ray beam (e.g., 90° lamina-based features). SRCT here was performed at beamline 47XU (BL47XU) of the Super Photon ring-8 GeV (SPring-8) facility in Japan. Intermediate-thickness-ply laminates (2× thicker ply vs. thin-ply, similar to conventional aerospace-grade unidirectional plies) exhibit no change in DENT ultimate tensile strength for baseline vs. nanostitched configurations, explained mechanistically by an observed progressive damage mode transition from notch-blunting inter-and intra-laminar matrix damage-dominated (typical of thicker-ply laminates in literature) to brittle fiber breakage-and diffuse matrix damage-dominated (typical of thinner-ply laminates in literature). Thin-ply and thick-ply laminates have been tested similarly, showing significant strength increase in the nanostitched thick-ply (3× thicker ply vs. thin-ply) configuration, which will be the subject of future work. These findings contribute new CFRP failure insights, which can guide and inform mechanical enhancement approaches fundamental to eliciting synergistic latency in hybrid/hierarchical laminates, as well as advance currently limited modeling.