Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Janssens, T. A.

  • Google
  • 1
  • 1
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Semi-analytical modelling of variable stiffness laminates with discontinuities4citations

Places of action

Chart of shared publication
Castro, Saullo G. P.
1 / 27 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Castro, Saullo G. P.
OrganizationsLocationPeople

document

Semi-analytical modelling of variable stiffness laminates with discontinuities

  • Castro, Saullo G. P.
  • Janssens, T. A.
Abstract

Designs taking advantage of fibre-steered laminated manufacturing can optimally vary the stiffness and strength properties of high-performance structural components according to the geometry, loads and boundary conditions. For the stability behaviour of laminates with discontinuities such as local reinforcements and cut-outs, variable stiffness laminates have the additional ability to decrease stress concentration factors, increase buckling loads and decrease the negative effects of a cut-out; outperforming traditional straight-fibre designs. With the aim of finding closed-form analysis methods or methods with a reduced computational cost, the present study proposes a semi-analytical framework to analyze the stability behaviour of variable stiffness laminates with local reinforcements and cut-outs. Due to the discontinuous nature of the displacement field in these structures, the approximation functions are enriched to capture the behaviour near the discontinuity. In order to determine the energy functional derivatives across the laminate domain, Gauss-Legendre Quadrature numerical integration rules are applied to both rectangular and circular domains and the resultant energies are obtained by subtracting the integration of the cut-out domain from the full domain. A displacement-based formulation is used for the out-of-plane field variable, whereas a stress-based approach is used for the in-plane pre-buckling stress state. The model is set-up for balanced and symmetric laminates, thus decoupling the out-of-plane and the in-plane behaviours. A thorough verification is performed against existing models in the literature and against finite element results. The results for various plates and laminates with varying discontinuities and variable stiffness properties show a good agreement for both in-plane and out-of-plane field variables, ultimately leading to an accurate prediction of the stability behavior of structures with discontinuities.

Topics
  • impedance spectroscopy
  • strength