People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castro, Saullo G. P.
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminatescitations
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Measurement of damage growth in ultrasonic spot welded joint
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Semi-analytical modelling of variable stiffness laminates with discontinuitiescitations
- 2021Circumferential and radial lamina application for natural frequencies problems
- 2020Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditionscitations
- 2020A multiaxial fatigue damage model for isotropic materialscitations
- 2019Supersonic Flutter and Buckling Optimization of Tow Steered Composite Platescitations
- 2018An active-passive nonlinear finite element model for electromechanical composite morphing beams
- 2017Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz methodcitations
- 2017Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defectcitations
- 2017Panel flutter analysis and optimization of composite tow steered platescitations
- 2017Buckling of axially compressed CFRP cylinders with and without additional lateral loadcitations
- 2016Design and Manufacture of Conical Shell Structures Using Prepreg Laminatescitations
- 2016Flutter of stiffened composite panels considering the stiffener's base as a structural elementcitations
- 2015Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation techniquecitations
- 2015Investigation of Buckling Behavior of Composite Shell Structures with Cutoutscitations
- 2015Experimental and numerical estimation of buckling load on unstiffened cylindrical shells using a vibration correlation techniquecitations
- 2014Numerical characterization of imperfection sensitive composite structurescitations
- 2014Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shellscitations
- 2014Verification study on buckling behaviour of composite cylinder with eccentric supports
Places of action
Organizations | Location | People |
---|
document
Semi-analytical modelling of variable stiffness laminates with discontinuities
Abstract
Designs taking advantage of fibre-steered laminated manufacturing can optimally vary the stiffness and strength properties of high-performance structural components according to the geometry, loads and boundary conditions. For the stability behaviour of laminates with discontinuities such as local reinforcements and cut-outs, variable stiffness laminates have the additional ability to decrease stress concentration factors, increase buckling loads and decrease the negative effects of a cut-out; outperforming traditional straight-fibre designs. With the aim of finding closed-form analysis methods or methods with a reduced computational cost, the present study proposes a semi-analytical framework to analyze the stability behaviour of variable stiffness laminates with local reinforcements and cut-outs. Due to the discontinuous nature of the displacement field in these structures, the approximation functions are enriched to capture the behaviour near the discontinuity. In order to determine the energy functional derivatives across the laminate domain, Gauss-Legendre Quadrature numerical integration rules are applied to both rectangular and circular domains and the resultant energies are obtained by subtracting the integration of the cut-out domain from the full domain. A displacement-based formulation is used for the out-of-plane field variable, whereas a stress-based approach is used for the in-plane pre-buckling stress state. The model is set-up for balanced and symmetric laminates, thus decoupling the out-of-plane and the in-plane behaviours. A thorough verification is performed against existing models in the literature and against finite element results. The results for various plates and laminates with varying discontinuities and variable stiffness properties show a good agreement for both in-plane and out-of-plane field variables, ultimately leading to an accurate prediction of the stability behavior of structures with discontinuities.