Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lincoln, Reece L.

  • Google
  • 6
  • 4
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Dataset for computational and experimental buckling analysis of constant-stiffness and variable-stiffness composite cylinderscitations
  • 2023Increasing reliability of axially compressed cylinders through stiffness tailoring and optimization5citations
  • 2021Optimization of imperfection-insensitive continuous tow sheared rocket launch structures8citations
  • 2021Manufacture and buckling test of a variable-stiffness, variable-thickness composite cylinder under axial compression7citations
  • 2020Imperfection-Insensitive Continuous Tow-Sheared Cylinders22citations
  • 2020Imperfection-Insensitive Continuous Tow Sheared Cylindercitations

Places of action

Chart of shared publication
Weaver, Pm
6 / 560 shared
Zympeloudis, Evangelos D.
1 / 3 shared
Groh, Rainer Mj
6 / 45 shared
Pirrera, Alberto
6 / 85 shared
Chart of publication period
2024
2023
2021
2020

Co-Authors (by relevance)

  • Weaver, Pm
  • Zympeloudis, Evangelos D.
  • Groh, Rainer Mj
  • Pirrera, Alberto
OrganizationsLocationPeople

document

Optimization of imperfection-insensitive continuous tow sheared rocket launch structures

  • Weaver, Pm
  • Groh, Rainer Mj
  • Pirrera, Alberto
  • Lincoln, Reece L.
Abstract

Geometric imperfection sensitivity is the largest influencing factor that limits the design of thin-walled monocoque cylinders. Current generation cylindrical architectures, such as those found in rocket launch vehicles, rely on the use of sandwich or blade-stiffened structures to reduce the imperfection sensitivity of the cylinder. Whilst much research has focused on the creation of new knockdown factors that relate to the modern architectures used, this paper focuses on reducing the imperfection sensitivity of a monocoque cylinder from a design perspective. Variable-angle composites offer an opportunity to design the load paths of structures, thus reducing the effective area over which imperfections initiate buckling. Continuous Tow Shearing (CTS) is one such variable-angle manufacturing technique. It does not cause common in-process manufacturing defects associated with Automated fiber Placement such as fiber wrinkling or fiber buckling. In addition, there is a shearing angle-thickness coupling that results in a local thickness build-up, which, whilst increasing the mass of the structure, enables embedded stiffeners to be created by shearing the tow. Three genetic algorithm (GA) optimizations are carried out to maximize the imperfect mass-specific buckling load to investigate the efficacy of CTS and tow-steered designs in reducing imperfection sensitivity. The first optimization considers idealistic manufacturing capabilities with a random geometric imperfection and results show that whilst the imperfection sensitivity has decreased considerably, the GA-optimum result does not have general imperfection insensitivity. The second and third optimizations consider current manufacturing capabilities and are compared against one another to analyze the use of a evolutionary hybrid GA and a probabilistic, reliability-based GA. In all three optimizations, the GA-optimum laminate demonstrates imperfection insensitivity.

Topics
  • impedance spectroscopy
  • composite
  • defect
  • random