People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Breuker, Roeland De
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Aeroelastic Tailoring of a Strut-Braced Wing for a Medium Range Aircraftcitations
- 2023Optimization Framework of a Ram Air Inlet Composite Morphing Flapcitations
- 2022Application of Aeroelastic Tailoring for Load Alleviation on a Flying Demonstrator Wing †citations
- 2022Assessment of an Increased-Fidelity Aeroelastic Experiment for Free Flying Wing Response to Gust Excitation
- 2022Aeroelastic Wing Demonstrator with a Distributed and Decentralized Control Architecturecitations
- 2022An aeroelastic optimisation framework for manufacturable variable stiffness composite wings including critical gust loadscitations
- 2021Development and testing of an active trailing edge morphing demonstrator for a rotary wingcitations
- 2021Skin Panel Optimization of the Common Research Model Wing using Sandwich Compositescitations
- 2021Aeroelastic optimisation of manufacturable tow-steered composite wings with cruise shape constraint and gust loadscitations
- 2021Developing the Model Reduction Framework in High Frame Rate Visual Tracking Environment
- 2020Static and dynamic aeroelastic tailoring with composite blending and manoeuvre load alleviationcitations
- 2020Ground Testing of the FLEXOP Demonstrator Aircraftcitations
- 2019Aeroelastic optimization of composite wings including fatigue loading requirementscitations
- 2018FLEXOP – Application of aeroelastic tailoring to a flying demonstrator wing
- 2018Aeroelastic optimization of composite wings subjected to fatigue loadscitations
- 2017Aeroelastic Design of Blended Composite Structures Using Lamination Parameterscitations
- 2017Aeroelastic tailoring for static and dynamic loads with blending constraints
- 2016Aeroelastic Optimization of Variable Stiffness Composite Wing with Blending Constraintscitations
- 2016A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing
- 2016Derivation and application of blending constraints in lamination parameter space for composite optimisationcitations
- 2015Special Issue
- 2015Development and Testing of an Unconventional Morphing Wing Concept with Variable Chord and Camber
Places of action
Organizations | Location | People |
---|
document
Ground Testing of the FLEXOP Demonstrator Aircraft
Abstract
Ground testing campaign conducted on the FLEXOP demonstrator aircraft is presented in this paper. The conducted tests are grouped in structural, flight system and integration tests. Along with the description of the test setup and test execution, the main findings and conclusions are also given. The structural tests comprise the static, ground vibration and the airworthiness test. The static and the ground vibration tests were used for structural characterisation of the manufactured wings and airframe as a whole. Assessment and calibration of the Fibre Brag strain sensing system for wing shape and load reconstruction is also presented within this context. The airworthiness test is used to demonstrate the structural integrity of the manufactured wings under specified limit loads. Within the context of the flight system tests, the main components of the on-board autopilot hardware-software system are briefly introduced including the signal data flow from the RC transmitter to the aircraft controls, the functionality of the baseline autopilot software and the communication with the ground station. All of these components are integrated into the hardware-in-the-loop environment, which is also briefly introduced along with the servo motor identification and the hardware delay measurements. The measured hardware delay was considered in the design of the baseline and flutter controllers. The flutter controllers were tested together with the baseline controller in the software-in-the-loop environment. System integration tests are presented last. In this context the airbrake, the engine, the compatibility of electronic components, the range and the taxi tests are presented.