People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Breuker, Roeland De
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Aeroelastic Tailoring of a Strut-Braced Wing for a Medium Range Aircraftcitations
- 2023Optimization Framework of a Ram Air Inlet Composite Morphing Flapcitations
- 2022Application of Aeroelastic Tailoring for Load Alleviation on a Flying Demonstrator Wing †citations
- 2022Assessment of an Increased-Fidelity Aeroelastic Experiment for Free Flying Wing Response to Gust Excitation
- 2022Aeroelastic Wing Demonstrator with a Distributed and Decentralized Control Architecturecitations
- 2022An aeroelastic optimisation framework for manufacturable variable stiffness composite wings including critical gust loadscitations
- 2021Development and testing of an active trailing edge morphing demonstrator for a rotary wingcitations
- 2021Skin Panel Optimization of the Common Research Model Wing using Sandwich Compositescitations
- 2021Aeroelastic optimisation of manufacturable tow-steered composite wings with cruise shape constraint and gust loadscitations
- 2021Developing the Model Reduction Framework in High Frame Rate Visual Tracking Environment
- 2020Static and dynamic aeroelastic tailoring with composite blending and manoeuvre load alleviationcitations
- 2020Ground Testing of the FLEXOP Demonstrator Aircraftcitations
- 2019Aeroelastic optimization of composite wings including fatigue loading requirementscitations
- 2018FLEXOP – Application of aeroelastic tailoring to a flying demonstrator wing
- 2018Aeroelastic optimization of composite wings subjected to fatigue loadscitations
- 2017Aeroelastic Design of Blended Composite Structures Using Lamination Parameterscitations
- 2017Aeroelastic tailoring for static and dynamic loads with blending constraints
- 2016Aeroelastic Optimization of Variable Stiffness Composite Wing with Blending Constraintscitations
- 2016A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing
- 2016Derivation and application of blending constraints in lamination parameter space for composite optimisationcitations
- 2015Special Issue
- 2015Development and Testing of an Unconventional Morphing Wing Concept with Variable Chord and Camber
Places of action
Organizations | Location | People |
---|
document
Aeroelastic optimization of composite wings subjected to fatigue loads
Abstract
<p>An analytical model to predict the fatigue life of a composite laminate is discussed. It is based on the method developed by Kassapoglou to predict fatigue failure. The analytical model calculates stresses in each ply using classical lamination theory, degrades the residual strength using the linear degradation law and predicts failure based on Tsai Wu failure theory. The cycles to failure are predicted using the updated cycle-by-cycle probability of failure. The predictions are validated for both a constant amplitude and a variable amplitude loading on a Glass/Epoxy laminate. Furthermore the analytical model is extended to work with laminates described using lamination parameters instead of ply angles and stacking sequence. The analytical fatigue model is then integrated in the TU Delft aeroelastic and structural optimization tool PROTEUS. A thickness and stiffness optimization of the NASA Common Research Model (CRM) wing has been carried out. Results show that fatigue may play an important role in the aeroelastic optimization of a composite wing.</p>