Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nasab, Farzan

  • Google
  • 2
  • 8
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Optimization of the Interacting StiffenedSkins and Ribs Made of Composite Materials5citations
  • 2018A level-set-based strategy for thickness optimization of blended composite structures17citations

Places of action

Chart of shared publication
De Boer, Andre
2 / 15 shared
Baran, Isnet
2 / 29 shared
Akkerman, Remko
2 / 423 shared
Geijselaers, Hubert
2 / 31 shared
Farzan Nasab, F.
1 / 1 shared
Geijselaers, H. J. M.
1 / 7 shared
De Boer, A.
1 / 17 shared
Baran, I.
1 / 23 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • De Boer, Andre
  • Baran, Isnet
  • Akkerman, Remko
  • Geijselaers, Hubert
  • Farzan Nasab, F.
  • Geijselaers, H. J. M.
  • De Boer, A.
  • Baran, I.
OrganizationsLocationPeople

article

Optimization of the Interacting StiffenedSkins and Ribs Made of Composite Materials

  • De Boer, Andre
  • Baran, Isnet
  • Nasab, Farzan
  • Akkerman, Remko
  • Geijselaers, Hubert
Abstract

A decomposition strategy for the structural optimization of a fiber-reinforced aircraft wing box is proposed. Theproposed method decomposes the wing-box optimization into two levels: a system-level and a subsystem-leveloptimization. The ribs are the subsystems of the problem. Each rib has a local set of design variables andconstraints. The loads on the ribs are the crushing loads caused by the bending of the wing. At the system level,the wing-box skins are optimized while accounting for the effect of the skin design on the loads applied to the ribs. Thesensitivity of the rib mass to the applied loads is evaluated using the Lagrange multipliers of the optimized rib design.To enhance the numerical efficiency of the two-level optimization, the changes of the loads on the ribs are subjected toa reduction by principal component analysis (PCA). In both the wing-level and rib-level optimization problems, thelevel-set strategyfor the optimization of compositestructures, previouslyintroduced by the authors, is employed.Thismethod permits an advantageous use of coarse and fine finite element models employing a standard commercial finiteelement code. The proposed method is applied to the design of a composite horizontal tail plane. The accuracy of andthe computational time savings by the proposed PCA-based reduction scheme are quantified.

Topics
  • impedance spectroscopy
  • composite
  • decomposition