People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rolfes, Raimund
Leibniz University Hannover
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Evaluating the mechanical behavior of carbon composites with varied ply-thicknesses using acoustic emission measurements
- 2024A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocompositescitations
- 2024Phase-field modeling of fracture in viscoelastic–viscoplastic thermoset nanocomposites under cyclic and monolithic loading
- 2023Analysis of fatigue crack and delamination growth in GFRP composites in tension and compression loading
- 2023Refined Semi-Analytical Framework to Predict the Natural Vibration Characteristics of Bistable Laminatescitations
- 2023A new base of wind turbine noise measurement data and its application for a systematic validation of sound propagation modelscitations
- 2022Effect of moisture on the nonlinear viscoelastic fracture behavior of polymer nanocompsites: a finite deformation phase-field model
- 2022Efficient generation of geodesic random fields in finite elements with application to shell bucklingcitations
- 2021Robust improvement of the asymmetric post-buckling behavior of a composite panel by perturbing fiber paths
- 2020An efficient semi-analytical framework to tailor snap-through loads in bistable variable stiffness laminatescitations
- 2019Evaluation and modeling of the fatigue damage behavior of polymer composites at reversed cyclic loadingcitations
- 2019Progressive Failure Analysis Using Global-Local Coupling Including Intralaminar Failure and Debondingcitations
- 2018Effect of spatially varying material properties on the post-buckling behaviour of composite panels utilising geodesic stochastic fields
- 2018Effect of spatially varying material properties on the post-buckling behaviour of composite panels utilising geodesic stochastic fields
- 2018Experimental characterization and constitutive modeling of the non-linear stress–strain behavior of unidirectional carbon–epoxy under high strain rate loadingcitations
- 2018Analysis of skin-stringer debonding in composite panels through a two-way global-local methodcitations
- 2018A structural design concept for a multi-shell blended wing body with laminar flow control
- 2015An elastic molecular model for rubber inelasticitycitations
- 2014Material Modelling of Short Fiber Reinforced Thermoplastic for the FEA of a Clinching Test
- 2014Investigating the VHCF of composite materials using new testing methods and a new fatigue damage model
Places of action
Organizations | Location | People |
---|
article
Progressive Failure Analysis Using Global-Local Coupling Including Intralaminar Failure and Debonding
Abstract
Composite laminate stiffened panels are often used in aircraft fuselage design because of their favourable properties. To assess the failure load of these thin-walled structures and to exploit their reserves, a reliable simulation capability for their postbuckling behaviour is often necessary. To perform a realistic failure analysis and to accurately detect final collapse, material degradation should be considered. Global-local approaches are computationally efficient techniques to perform a progressive failure analysis and to examine localized damaged areas in detail. In this paper, a two-way coupling global-local approach is presented, including a combination of different damage modes, such as matrix cracking, fiber damage and skin-stringer debonding. An accurate exchange of information concerning the damage state between global and refined local models is performed. From the global to the local model, the displacements are transferred through a submodeling procedure. Afterwards, the degraded material properties obtained from the local model analysis are returned to the global model with a special mapping technique that accounts for the different mesh sizes at the two levels. The two-way coupling procedure is applied to the progressive failure analysis of a one stringer composite panel loaded in compression. Finally, the numerical results of the procedure are compared with experimental results.