Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dammel, R.

  • Google
  • 1
  • 9
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Investigating high opacity and increased activation energy in the multi-trigger resist1citations

Places of action

Chart of shared publication
Roth, J.
1 / 4 shared
Kudo, T.
1 / 2 shared
Robinson, Alex
1 / 4 shared
Moinpour, M.
1 / 1 shared
Popescu, C.
1 / 9 shared
Cao, Y.
1 / 12 shared
Mcclelland, A.
1 / 2 shared
Lada, T.
1 / 1 shared
Ocallaghan, G.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Roth, J.
  • Kudo, T.
  • Robinson, Alex
  • Moinpour, M.
  • Popescu, C.
  • Cao, Y.
  • Mcclelland, A.
  • Lada, T.
  • Ocallaghan, G.
OrganizationsLocationPeople

article

Investigating high opacity and increased activation energy in the multi-trigger resist

  • Roth, J.
  • Kudo, T.
  • Robinson, Alex
  • Moinpour, M.
  • Popescu, C.
  • Cao, Y.
  • Dammel, R.
  • Mcclelland, A.
  • Lada, T.
  • Ocallaghan, G.
Abstract

The development of novel EUV resists is widely agreed to be one of the highest priority challenges for the deployment of high-NA EUV lithography. One potential approach is the multi-trigger concept wherein a reaction will only occur when multiple elements of the resist are initiated concurrently and in close spatial proximity. The multi-trigger material presented consists of a novel MTR molecule and a crosslinker, which represent the resist matrix, together with a photoacid generator (PAG). Research is continuing to upgrade this resist, in particular focusing on improving resist opacity and crosslinking density. Here we present results from further work focused on the enhancement of the high-opacity MTR resist. A new high-Z crosslinker molecule, mark III, has been synthesized and formulated in the MTR resist to make the high opacity MTR compatible with the ethyl lactate and PGMEA casting solvents. We report results obtained using the new MTR system containing this high-Z cross-linker mark III, with a variation of process conditions and formulation variations. The lithographic performance of a formulation containing this crosslinker, at pitch 32nm patterned on an NXE3350 is presented. Furthermore, we have also investigated increasing the activation energy of the self-quenching aspect of the MTR system. In the case presented, MTR8 has a higher activation energy than MTR4. Having a higher activation energy is predicted to allow the introduction of PEB to increase crosslinking and reduce pattern collapse, whilst simultaneously preserving the self-quenching behaviour. We present results which show a decrease in dose and Z-factor using MTR8 at this formulation ratio compared to MTR4.

Topics
  • density
  • impedance spectroscopy
  • casting
  • activation
  • lithography
  • quenching