Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salgado, Helena

  • Google
  • 4
  • 14
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Prototype of a standardized and controlled polishing tool for dental materialscitations
  • 2023Mechanical and surface properties of a 3D-printed dental resin reinforced with graphene5citations
  • 2022Investigation of the effect of the same polishing protocol on the surface roughness of denture base acrylic resins10citations
  • 2022Antimicrobial Activity of a 3D-Printed Polymethylmethacrylate Dental Resin Enhanced with Graphene13citations

Places of action

Chart of shared publication
Fonseca, Patrícia
2 / 3 shared
Fonseca, Catarina
1 / 1 shared
Quezada, Margarida
1 / 1 shared
Correia, Andre
2 / 8 shared
Marques, Marco
2 / 2 shared
Mesquita, Pedro
2 / 3 shared
Fialho, Joana
1 / 1 shared
Figueiral, Maria Helena
2 / 3 shared
Vaz, Mário
1 / 2 shared
Fernandes, Carlos
2 / 3 shared
Quezada, Margarida Martins
1 / 1 shared
Ferreira, José Maria Da Fonte
1 / 456 shared
Duarte, Ana S.
1 / 3 shared
Gomes, Ana T. P. C.
1 / 3 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Fonseca, Patrícia
  • Fonseca, Catarina
  • Quezada, Margarida
  • Correia, Andre
  • Marques, Marco
  • Mesquita, Pedro
  • Fialho, Joana
  • Figueiral, Maria Helena
  • Vaz, Mário
  • Fernandes, Carlos
  • Quezada, Margarida Martins
  • Ferreira, José Maria Da Fonte
  • Duarte, Ana S.
  • Gomes, Ana T. P. C.
OrganizationsLocationPeople

article

Mechanical and surface properties of a 3D-printed dental resin reinforced with graphene

  • Salgado, Helena
  • Mesquita, Pedro
  • Fialho, Joana
  • Figueiral, Maria Helena
  • Vaz, Mário
  • Marques, Marco
Abstract

<p>Objectives: Commercial photocurable polymers used in dental additive manufacturing still have mechanical limitations. The incorporation of graphene may provide interesting advantages in this field. This study aimed to evaluate in vitro the effect of adding graphene nanoparticles to a 3D-printed polymethylmethacrylate dental resin in terms of surface roughness, flexural properties, and hardness. Methods: A 3D-printed dental resin (Dental Sand, Harz Lab) was loaded with four different graphene nanoplatelet (Graphenest) concentrations: 0.01wt%, 0.1wt%, 0.25wt%, and 0.5wt%. The neat resin was used as the control group. The surface roughness was measured with a contact profilometer using bar-shaped specimens (50x10x4mm). The flexural strength of specimens (80x10x4mm) from each group was calculated using the 3-point bending test in a Universal Test Machine. Hardness shore D was measured using a manual durometer on round-shaped specimens (12x6mm). Data were evaluated using the Kruskall-Wallis test followed by post-hoc Bonferroni corrected pairwise inter-group comparisons. Statistical significance was set at p&lt;0.05. Results: Graphene improved 3D-printed PMMA resin hardness with statistical significance at a concentration of 0.01wt% (p=0.043). Surface roughness increased with graphene concentrations above 0.01wt%, with statistically significant differences at 0.25wt% (p=0.006) and 0.5wt% (p=0.005) concentrations. Flexural properties worsened with increased graphene concentrations, and these differences were significant in the concentrations of 0.25wt% (p=0.028) and 0.5wt% (p=0.006). Conclusions: The use of graphene as a mechanical reinforcement nanomaterial seems to be viable at low concentrations without prejudice to the surface roughness of a 3D-printed polymethylmethacrylate resin. (Rev Port Estomatol Med Dent Cir Maxilofac.</p>

Topics
  • nanoparticle
  • surface
  • polymer
  • strength
  • flexural strength
  • hardness
  • bending flexural test
  • resin
  • additive manufacturing
  • mechanical and surface