Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pey, J.

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Microstuctural analysis and determination of PM10 emission sources in an industrial Mediterranean city3citations

Places of action

Chart of shared publication
Gkanas, Evangelos I.
1 / 10 shared
Tolis, E. I.
1 / 1 shared
Skemperi, A.
1 / 1 shared
Pérez, N.
1 / 2 shared
Pavlidou, E.
1 / 7 shared
Bartzis, J. G.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Gkanas, Evangelos I.
  • Tolis, E. I.
  • Skemperi, A.
  • Pérez, N.
  • Pavlidou, E.
  • Bartzis, J. G.
OrganizationsLocationPeople

article

Microstuctural analysis and determination of PM10 emission sources in an industrial Mediterranean city

  • Gkanas, Evangelos I.
  • Tolis, E. I.
  • Skemperi, A.
  • Pérez, N.
  • Pavlidou, E.
  • Pey, J.
  • Bartzis, J. G.
Abstract

Scientists are interested in knowing more about the control of sources which contribute to environmental pollution. Air pollution has two main sources: anthropogenic and natural sources. The natural contributions to environmental pollution can be assessed, but cannot be totally controlled. while the emissions from the anthropogenic sources can be controlled. These air pollutants can be dispersed and transferred by winds in the atmosphere. The focus area of this study is the Mediterranean basin. The most important winds in this area are the land and sea breezes. Scanning Electron Microscopy (SEM) was applied to characterize the morphology of the PM10 samples in order to identify possible emission sources for the occuring pollution. Energy Dispersive X-ray Spectroscopy (EDS) was performed for the elemental analysis and chemical characterization of the PM10 samples. The analysis showed that the PM10 samples can be divided into three different groups: the samples containing mineral phases, the compounds from combustion processes and the particles emitted from high-temperature processes.

Topics
  • impedance spectroscopy
  • morphology
  • mineral
  • compound
  • phase
  • scanning electron microscopy
  • combustion
  • Energy-dispersive X-ray spectroscopy
  • elemental analysis