Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krawczyk, Sławomir

  • Google
  • 3
  • 11
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Filmcitations
  • 2020Hydrogen sensor based on field effect transistor with C-Pd layer3citations
  • 2014Infiuence of Hydrogen on the Properties of Nanostructured C-Pd Films for Sensing Applications3citations

Places of action

Chart of shared publication
Kozłowski, Mirosław
1 / 19 shared
Moszczyńska, Dorota
1 / 21 shared
Wronka, Halina
2 / 4 shared
Firek, Piotr
2 / 19 shared
Szmidt, Jan
2 / 16 shared
Elzbieta, Czerwosz
1 / 1 shared
Sochacki, Mariusz
1 / 9 shared
Czerwosz, Elżbieta
2 / 5 shared
Kamińska, Anna
1 / 1 shared
Sobczak, Kamil
1 / 5 shared
Diduszko, Ryszard
1 / 7 shared
Chart of publication period
2024
2020
2014

Co-Authors (by relevance)

  • Kozłowski, Mirosław
  • Moszczyńska, Dorota
  • Wronka, Halina
  • Firek, Piotr
  • Szmidt, Jan
  • Elzbieta, Czerwosz
  • Sochacki, Mariusz
  • Czerwosz, Elżbieta
  • Kamińska, Anna
  • Sobczak, Kamil
  • Diduszko, Ryszard
OrganizationsLocationPeople

article

Infiuence of Hydrogen on the Properties of Nanostructured C-Pd Films for Sensing Applications

  • Kamińska, Anna
  • Krawczyk, Sławomir
  • Czerwosz, Elżbieta
  • Sobczak, Kamil
  • Diduszko, Ryszard
Abstract

<jats:title>Abstract</jats:title><jats:p>In this paper we present the results of the investigations of nanostructured C-Pd films for hydrogen sensing applications. These C-Pd films were prepared by physical vapor deposition and then annealed in an argon flow at the temperature of 500°C. The structure and morphology of the prepared C-Pd films were investigated using transmission electron microscopy and energy dispersive X-ray spectroscopy. We studied the infiuence of hydrogen on the electrical properties and crystal structure of C-Pd films. It was shown that film resistance changes depended on hydrogen concentration. At lower hydrogen concentration (up to 2 vol.%), the films response increased proportionally to [H<jats:sub>2</jats:sub>], while above 2 vol.% H<jats:sub>2</jats:sub>, it was almost constant. This is connected with the formation of a solid solution of hydrogen in palladium at lower H<jats:sub>2</jats:sub> concentration and the creation of palladium hydride at higher H<jats:sub>2</jats:sub> concentration. X-ray diffraction was used to confirm the formation of Pd-H solid solution and palladium hydride.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • x-ray diffraction
  • physical vapor deposition
  • Hydrogen
  • transmission electron microscopy
  • X-ray spectroscopy
  • palladium